
 D

Category: Data Mining and Databases

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

348

The Evolution of UML

INTRODUCTION

Since its inception, the Unified Modeling Language 
(UML) has risen to relative ubiquity in the IT com-
munity. However, despite its status as an ISO industry 
standard (International Organization for Standardiza-
tion, 2005), the UML is still evolving to accommodate 
the changing needs of industry. This development aims 
to ensure that UML remains effective and relevant to 
the most current developments in software engineer-
ing techniques. This chapter charts the progress of 
this arguably indispensable standard and discussed 
the ongoing evolution in three sections: The Past, The 
Present, and The Future. The Past section will detail 
the reasons for which standardization was needed, the 
history behind its inception and development, initial 
reception from the user community and also its initial 
effectiveness. The Present section then describes the 
various changes between UML 1.0 and UML 2.4.1. The 
reasons behind these changes and the effectiveness of 
them are then discussed. Finally in The Future section, 
the chapter will describe the current state of UML, 
predictions for the next specification of UML based 
on the Object Management Group documentation, 
and also common problems and suggestions from the 
wider community which may be addressed in future 
iterations of the specification.

BACKGROUND

The Unified Modeling Language is a form of notation 
that was developed with the core goal of creating a 
standardized representation of general-purpose models, 
with the focus of functionality of these primarily being 
for software engineering and systems development. 
Despite this main focus of approach in the specifi-

cation design, the language is meant to attain some 
level of applicability regardless of the subject matter. 
The reason a modeling language was needed in order 
to achieve this was to manage the complexity of the 
subject at hand - whether it was system or software 
design or another subject entirely. As a model is by 
nature an abstraction of reality, it allows the user to 
characterize the design of the subject in an effective 
manner. This abstract model then enables the user to 
better evaluate the subject and communicate that in an 
efficient and meaningful way rather than attempting to 
demonstrate their intentions using the actual software 
or system in question. In order to achieve this intended 
core goal the language has been modified and refined 
over time, resulting in evolutions of varying effective-
ness and popularity.

THE EVOLUTION OF UML

The Past

In the late 1950s, the first object orientated program-
ming language, Simula was introduced, and with it came 
“a powerful new combination of ideas into structuring 
computer programs, including instantiation of abstract 
data types, inheritance, and polymorphism” (Cook, 
2012, p. 471). To accompany this new idea of object 
orientated languages, methods for designing software 
in this object orientated way also started to emerge, and 
in time they were referred to as modeling languages. 
By the late 1980s there were more than fifty separate 
modeling languages - each with their own syntax, 
structure and notation. There were many issues with 
this overwhelming variety of languages and it has been 
noted that “such open-ended approaches [could] affect 
and constrain the system in unexpected ways or even 

Rebecca Platt
Murdoch University, Australia

Nik Thompson
Murdoch University, Australia

DOI: 10.4018/978-1-4666-5888-2.ch186



The Evolution of UMLCategory: Data Mining and Databases

 D D

Category: Data Mining and DatabasesThe Evolution of UML

349

result in failure. For example, system development 
and implementation failure rates remained stubbornly 
high. Cost overruns and time overruns were still the 
norm, rather than the exception” (Erickson & Siau, 
2013, p. 296). As it was humanly impossible in this 
kind of environment for all system analysts and other 
relevant personnel to be trained in all methods, the 
lack of communication and technical understanding 
coupled with the fact that the majority of the languages 
available were unable to meet the demands required 
of them, led to alarmingly high project failure rates.

This lack of standardization and communication 
was not only negatively affecting development projects 
but also limiting the potential of object-orientated 
technology in general. In response to this very signifi-
cant concern, The Object Management Group (OMG) 
was founded in 1989. The initial and presiding goal 
of OMG was to “create a standard for communication 
amongst distributed objects” (Cook, 2012, p. 472). This 
goal was intended to foster progress toward a common 
object model that would work on all platforms on all 
kinds of development projects. In order to further this 
goal specifically in the domain of modeling languages, 
OMG launched the Object Analysis and Design Special 
Interest Group to study design methods. This is also 
the origin point from which any Request For Propos-
als were issued.

Around the time that OMG was founded, a sepa-
rate company called Rational was also attempting to 
implement a solution to the over saturation of modeling 
languages in use. To this end they recruited Grady Booch 
and James Rumbaugh in 1996. These men were the 
creators of two of the dominant modeling languages of 
the time. Booch’s method was called Object-Oriented 
Design (OOD) (Booch, 1991) and Rumbaugh’s method 
was known as the Object-Modeling Technique (OMT) 
(Rumbaugh, Blaha, Lorensen, Eddy, & Premerlani, 
1990). They were soon joined by Ivar Jacobson, whose 
Object-Oriented Software Engineering (OOSE) method 
(Jacobson, 1992) was also a prominent modeling lan-
guage at the time. “The Three Amigos” as they later 
came to be known then set to work on the develop-
ment of the Unified Modeling Language. A potentially 
universal standard form of notation with the intent to 
create ease of communication and reduce the risk of 
failure for projects, with human factors considered 
above all as this had been identified as a main failure 
point of previous projects (Erickson & Siau, 2013).

The UML 0.91 specification was the initial result of 
the unification of OOD, OMT, and OOSE, a somewhat 
successful endeavor as each base modeling language 
had unique strengths; Booch’s OOD was good for low 
level design, Rumbaugh’s OMT was effective for OO 
analysis, and Jacobson’s OOSE was good for high level 
design, as well as allowing for the implementation of 
use cases. Working with “The Three Amigos” were 
the UML Partners; a software development team who 
represented a range of different of vendors and system 
integrators, who would collaborate to propose UML as 
the standard modeling language for the OMG (Kobryn, 
1999). Representatives from other companies (such as 
IBM, Microsoft and Oracle) were consulted during the 
Object-Oriented Programming, Systems, Languages 
and Applications (OOPSLA) conference held that year, 
with the outcome of these consultations resulting in 
the UML 1.0 draft which was then submitted to OMG 
in response to the Request For Proposal. UML 1.0 was 
accepted by OMG in November, 1997.

The initial response after the release of the specifica-
tion indicated that the Unified Modeling Language was 
very effective, once the personnel involved had made 
it past the difficult learning curve of training in a new 
modeling language. In fact there is speculation that 
the response towards UML was actually too great - for 
while it was proven to be much more effective than its 
predecessors, it still had issues. The rapid uptake and 
positive response meant that the uptake of UML ended 
up growing at an alarming rate before it had finished 
standardizing properly.

The Present

When initially accepted as a standard, UML 1.0 ap-
peared to meet all stated requirements and to be an 
effective modeling language. Since then, however, 
a number of revisions have taken place to alter the 
notation in order to fix various shortcomings and to 
become more effective. For example, some of the is-
sues that were resolved between UML 1.1 and UML 
1.3 included the lack of integration between certain 
model types, the absence of certain modelers and 
that some of the standard elements were named and 
organized inconsistently. There was also trouble with 
the architectural alignment – According to OMG “The 
submitters fell short of their goal of implementing a 
4-layer metamodel architecture using a strict metamod-



 D

Category: Data Mining and DatabasesThe Evolution of UMLThe Evolution of UMLCategory: Data Mining and Databases

 D

350

eling approach. Instead they settled for the pragmatic, 
but less rigorous, loose (non-strict) metamodeling 
approach. This “adversely affected the integration of 
UML with other OMG modeling standards, such as the 
Meta Object Facility (MOF)” (Kobryn, 1999, p. 31).

As it is, The Object Management Group oversees 
standardization and it is through their processes that 
revisions of the UML are implemented. There are two 
mechanisms for standard revisions; RFPs and RTFs. The 
Request For Proposal (RFP) is the primary mechanism 
for updating specifications, while Revision Task Forces 
(RTF) are secondary. When a proposal is received, it 
is the RTF that examines and votes on the validity of 
it. The RTF is also able to recommend changes to the 
proposal in order to clarify areas that may be ambigu-
ous. If the proposal is approved, then it becomes OMG 
adopted technology. If the proposal is not approved, 
then the RFP is reissued, with changes made to it to 
reflect the reasons for the last proposal failing.

Through the OMG system, a number of significant 
changes have been made in response to the some of 
the shortcomings identified in UML. Between UML 
1.1 and UML 1.2, the specification was reformatted in 
order to better align with other OMG specifications. 
Typographical and grammatical errors were also tar-
geted in this revision. Between UML 1.2 and UML 1.3, 
problems that had occurred during the alterations of 
the last revision were fixed, the activity graph notation 
was completed, and the standard elements were more 
formally organized. The revisions of the specification 
were all rather minor after that, up until UML 2.0 was 
released in 2005. The current UML Specification in use 
is UML 2.4.1, and unlike UML 1.x this specification is 
organized into four sections. These sections are called 
the Superstructure, the Infrastructure, the Object Con-
straint Language, and the UML Diagram Interchange. 
The Infrastructure “defines the foundational language 
constructs required” (OMG, 2011, p. 1). This is then 
balanced by the UML Superstructure, which “defines 
the user level constructs required” (OMG, 2011, p.1).

Studies have shown that the ongoing revision imple-
mentation has been successfully achieving the goal of 
standardization. As UML becomes more refined, it also 
becomes more universally accessible and accepted. A 
study found that 21% of Australian Computing Society 
members used UML frequently (Davies, 2006), further 
evidence of this growing standardization was demon-
strated by Dobing and Parsons (2006) who noted that 
class diagrams were the most frequently utilized aspect 

of UML as reported by 73% of participants. Since these 
studies were conducted it has been demonstrated that 
practitioners have been successfully implementing 
the Unified Modeling Language more effectively and 
frequently, to such a point that it is now a part of many 
undergraduate university curricula in Information 
Technology fields. More recent studies have shown 
that the growth and uptake of UML has persisted over 
time (e.g. Dobing & Parsons, 2010; Budgen, Burn, 
Brereton, Kitchenham, & Pretorius, 2011).

The Future

The next specification for UML, UML 2.5, was due to 
be officially published on October the 4th, 2013. After 
failing to make a release by this date, an “In Progress” 
version of UML 2.5 was published in its stead. As such 
there is currently no set date on which this standard 
will be formally released.

According to the unofficial release specifications, 
there are a number of significant changes to be an-
ticipated in this standard. Notably, the documentation 
format has once again been altered, so that “the UML 
Infrastructure is no longer part of the specification” 
(OMG, 2013, p. 3) – this means that instead of separate 
documents, it will once again be all contained within 
a single one. Another change that has occurred for 
this specification is that certain sections have been 
removed in order to help reduce the “bloating” that 
has been an issue of UML since its inception. As such, 
the notion of compliance levels has been eliminated 
as they were found to be ineffective. The repercussion 
of this is that now a tool either completely complies 
with UML notation or it does not – there is now no 
integrated compliance level. However, partial compli-
ance can be achieved by “implementing a subset of its 
metamodel, notation, and semantics, in which case the 
vendor should declare which subset it implements” 
(OMG, 2013, p. 3).

Issues, Controversies, Problems

Despite years of revision that have successfully yielded 
incremental improvements to the specification, prob-
lems remain that need to be addressed. The standard 
elements are still rather “bloated” and they contain a 
level of inconsistency in both naming and organiza-
tion. This level of complexity and the inconsistencies 



The Evolution of UMLCategory: Data Mining and Databases

 D D

Category: Data Mining and DatabasesThe Evolution of UML

351

introduced during revisions have been detrimental to 
the overall readability of the specification. There is a 
concern that the design of the notation is not sufficiently 
user-friendly, which would discourage potential users 
from adopting and using UML in favour of other simpler 
alternatives such as DOT graph description language, 
as described by Erickson and Siau (2013).

Another potential issue that needs to be addressed 
concerns the cyclic nature of specification revisions. 
In the process of updating UML to attempt to deal with 
the above issues and problems, excessive addition, 
removal and alteration of major concepts could affect 
the core structure of UML. The current method of revi-
sion leaves the core structure vulnerable. As previously 
stated, the UML focus of functionality was primarily 
for software engineering. As a result, software tools 
offer extensive support for UML when used with this 
focus in mind. However there is very little support in 
software tools for any other application, despite the 
language’s goal of being a standardized representation 
of general-purpose models.

Solutions and Recommendations

The issue of “bloating” regarding the elements of UML 
is due to the inconsistent naming and organization 
throughout the standards. By phasing in more consis-
tency to the various aspects of future specifications of 
the language, the volume of elements would be reduced 
and bloating would cease to be an issue. Reduction of 
elements and increase in consistency would also aid the 
language in terms of potential new users. Simplifying 
the language (and the specification documentation is 
relation to this) would increase the readability of it, 
and encourage more users to utilize UML instead of 
another modeling language. Also, core structure vulner-
ability can be corrected by the introduction of protocols 
within the specification revision procedure, to ensure 
that this remains unaltered. Support for non-software 
engineering projects is difficult to implement currently 
due to the fact that UML implementation seems to be 
“tool-based.” If all of the various tools used for UML 
that are widely recognized started creating more sup-
port for the language in terms other than software 
engineering, then the specification would broaden to 
include this more as a result.

FUTURE RESEARCH DIRECTIONS

It has been shown that UML has been implemented 
within the field of software engineering increasingly 
over the years, moving from relatively low industry 
usage (e.g. Davies, 2006) to the present state where 
the growth in UML usage has led to an abundance 
of tools and software to better support the language. 
However, research into the Unified Modeling Language 
has been limited in recent years. There have been a 
few surveys conducted based on the use of UML in 
terms of software engineering and development, but 
very little in terms of its other applications as a general 
purpose modeling language. Current study seems to 
focus on the compliance of tools to UML, rather than 
the compliance of UML to its intended purpose. Future 
surveys of the adoption of UML (both within and out-
side of the field of software engineering) would be well 
served to include elements concerning the perceived 
effectiveness of the modeling language by users in real 
world situations. Another possible research direction 
may examine how the modeling language has affected 
development practices and utilization of techniques, and 
whether the overall project success rate has increased 
as a result of this.

CONCLUSION

The Unified Modeling Language may be the current in-
dustry standard, but it is still evolving and transitioning 
through constant revisions of the specification. These 
stages of revision are implemented to ensure that the 
UML remain effective and viable in the demanding and 
rapidly changing landscape of software engineering. 
This chapter examined this evolution in terms of three 
main periods described as The Past, The Present, and 
The Future. The Past section detailed the reason behind 
which standardization was needed, the history leading 
up to and including the development of UML. The 
initial reception from the user community and initial 
effectiveness were also discussed. The Present section 
then described the various changes between UML 1.0 
and UML 2.4.1 and the reasons behind these changes 
and their ongoing effects. Finally, The Future section 
described the current state of UML, the expectations 
for the next specification of UML and also some open 
issues from the wider community which are yet to be 



 D

Category: Data Mining and DatabasesThe Evolution of UMLThe Evolution of UMLCategory: Data Mining and Databases

 D

352

addressed. Some possible solutions and future research 
directions were also presented in light of these issues. In 
conclusion the Unified Modeling Language has proven 
itself to be an effective standard for communication 
and it will maintain its significant foothold in software 
engineering for the foreseeable future. However, the 
requirement for continual revisions to the specifications 
will also remain as the expected functionality and needs 
of UML practitioners will continue to chanve over time.

REFERENCES 

Avison, D. E., & Fitzgerald, G. (2003). Where now 
for development methodologies? Communications of 
the ACM, 46(1), 78–82. doi:10.1145/602421.602423

Booch, G. (1991). Object-oriented design with ap-
plication. California: Benjamin-Cummings.

Budgen, D., Burn, A. J., Brereton, O. P., Kitchenham, B. 
A., & Pretorius, R. (2011). Empirical evidence about the 
UML: a systematic literature review. Software, Practice 
& Experience, 41(4), 363–392. doi:10.1002/spe.1009

Cook, S. (2012). Looking Back at UML. Software 
& Systems Modeling, 11(4), 471–480. doi:10.1007/
s10270-012-0256-x

Davies, I., Green, P., Rosemann, M., Indulska, M., & 
Gallo, S. (2006). How do practitioners use conceptual 
modeling in practice? Data & Knowledge Engineer-
ing, 58(3), 358–380. doi:10.1016/j.datak.2005.07.007

Dobing, B., & Parsons, J. (2006). How UML is 
used. Communications of the ACM, 49(5), 109–113. 
doi:10.1145/1125944.1125949

Dobing, B., & Parsons, J. (2010). Dimensions of 
UML Diagram Use: Practitioner Survey and Research 
Agenda. In K. Siau, & J. Erickson (Eds.), Principle 
Advancements in Database Management Technologies: 
New Applications and Frameworks (pp. 271–290). 
Hershey: IGI Global.

Erickson, J., & Siau, K. (2013). Unified Modeling 
Language: The teen years and growing pains. Hu-
man Interface and the Management of Information. 
Information and Interaction Design (pp. 295–304). 
Berlin: Springer. doi:10.1007/978-3-642-39209-2_34

Fowler, M., & Scott, K. (2003). UML Distilled. Boston: 
Addison-Wesley.

International Organization for Standardization. (2005). 
ISO/IEC 19501:2005. Retrieved November 2, 2013, 
from http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=32620

Jacobson, I. (1992). Object-oriented software engineer-
ing: a use case driven approach. Pearson Education.

Kobryn, C. (1999). UML 2001: A standardization 
odyssey. Communications of the ACM, 42(10), 29–37. 
doi:10.1145/317665.317673

Lucas, F. J., Molina, F., & Taval, A. (2009). A systematic 
review of UML model consistency management. Infor-
mation and Software Technology, 51(12), 1631–1645. 
doi:10.1016/j.infsof.2009.04.009

Miles, R., & Hamilton, K. (2006). Learning UML 2.0. 
California: O’Reilly.

MOF Revision Task Force (1999). Meta Object Facility 
Specification v. 1.3. Document ad/99-06-05, Object 
Management Group.

Pilone, D., & Pitman, N. (2009). UML 2.0 in a Nutshell. 
California: O’Reilly Media.

Rumbaugh, J. R., Blaha, M. R., Lorensen, W., Eddy, 
F., & Premerlani, W. (1990). Object-oriented modeling 
and design. New Jersey: Prentice-Hall.

Russell, N., van der Aalst, W. M. P., ter Hofstede, A. 
H. M., & Wohed, P. (2006). On the suitability of UML 
2.0 Activity Diagrams for Business Process Modeling. 
Research and Practice in Information Technology, 
53, 95–104.

OMG. (1999). Policy and procedures of the OMG 
technical process. Document pp/99-05-01. Object 
Management Group.

OMG. (2011). OMG Unified Modeling Language 
(OMG UML), Infrastructure, v2.4.1. Object Manage-
ment Group. Retrieved November 10, 2013 from http://
www.omg.org/spec/UML/2.4.1/Infrastructure

OMG. (2013). OMG Unified Modeling Language 
(OMG UML), v2.5 FTF Beta1. Object Management 
Group. Retrieved November 10, 2013 from http://www.
omg.org/spec/UML/2.5

http://dx.doi.org/10.1145/602421.602423
http://dx.doi.org/10.1002/spe.1009
http://dx.doi.org/10.1007/s10270-012-0256-x
http://dx.doi.org/10.1007/s10270-012-0256-x
http://dx.doi.org/10.1016/j.datak.2005.07.007
http://dx.doi.org/10.1145/1125944.1125949
http://dx.doi.org/10.1007/978-3-642-39209-2_34
http://dx.doi.org/10.1145/317665.317673
http://dx.doi.org/10.1016/j.infsof.2009.04.009
http://www.omg.org/spec/UML/2.4.1/Infrastructure
http://www.omg.org/spec/UML/2.4.1/Infrastructure
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5


The Evolution of UMLCategory: Data Mining and Databases

 D D

Category: Data Mining and DatabasesThe Evolution of UML

353

ADDITIONAL READING 

Alhir, S. S. (2003). Learning UML. California: O’Reilly.

Álvarez, A. T., & Alemán, J. L. F. (2000). Formally 
modeling UML and its evolution: A holistic approach. In 
S. F. Smith (Ed.), Formal methods for open object-based 
distributed systems IV (pp. 183–206). US: Springer. 
doi:10.1007/978-0-387-35520-7_9

Bennett, S., McRobb, S., & Farmer, R. (2006). Object-
oriented systems analysis and design using UML (Vol. 
2). Berkshire, UK: McGraw-Hill.

Eriksson, H.-E., & Penker, M. (1997). UML toolkit. 
John Wiley & Sons, Inc.

Eriksson, H.-E., & Penker, M. (2000). Business model-
ing with UML. Chichester: Wiley.

Fowler, M. (2004). UML Distilled: A Brief Guide to 
the Standard Object Modeling Languange. Boston: 
Addison-Wesley Professional.

Kobryn, C. (1999). UML 2001: a standardization 
odyssey. Communications of the ACM, 42(10), 29–37. 
doi:10.1145/317665.317673

Miles, R., & Hamilton, K. (2006). Learning UML 2.0. 
California: O’Reilly.

Object Management Group. (2007). Unified Modeling 
Language (OMG UML). Superstructure.

Pooley, R., & Stevens, P. (1999). Using UML: Software 
Engineering with Objects and Rules. Boston: Addison-
Wesley Longman.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The 
Unified Modeling Language reference manual. Boston: 
Addison-Wesley Longman.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2005). 
Object-oriented Analysis and Design: With the Unified 
Process. Boston: Thomson Course Technology.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2011). 
Systems analysis and design in a changing world. 
Boston: Cengage Learning.

KEY TERMS AND DEFINITIONS

Model: A conceptual diagram used to represent 
a system.

Object Management Group: An organization 
created with the goal to determine a standard method 
of communication between distributed objects.

OOPSLA: “Object-Oriented Programming, 
Systems, Languages and Applications” – an annual 
research conference run by the Association for Com-
puting Machinery.

Software Engineering: The application of sys-
tematic methods and approaches for the development 
and maintenance of software artifacts.

Specification: The set of requirements that must 
be satisfied in order for any model to comply with the 
current standards of UML.

Unified Modeling Language: A form of notation 
developed with the core goal of creating a standard-
ized representation of general-purpose models, with 
the focus of functionality primarily being for software 
engineering.

http://dx.doi.org/10.1007/978-0-387-35520-7_9
http://dx.doi.org/10.1145/317665.317673

	Instructions
	Title Page
	The Evolution of UML

