
Encyclopedia of
Information Science
and Technology, Fourth
Edition
Mehdi Khosrow-Pour
Information Resources Management Association, USA

Published in the United States of America by
IGI Global
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2018 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Khosrow-Pour, Mehdi, 1951- editor.
Title: Encyclopedia of information science and technology / Mehdi
 Khosrow-Pour, editor.
Description: Fourth edition. | Hershey, PA : Information Science Reference,
 [2018] | Includes bibliographical references and index.
Identifiers: LCCN 2017000834| ISBN 9781522522553 (set : hardcover) | ISBN
 9781522522560 (ebook)
Subjects: LCSH: Information science--Encyclopedias. | Information
 technology--Encyclopedias.
Classification: LCC Z1006 .E566 2018 | DDC 020.3--dc23 LC record available at https://lccn.loc.gov/2017000834

 S

7481

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-5225-2255-3.ch651

The Past, Present, and Future of UML

INTRODUCTION

Since its inception, the Unified Modeling Lan-
guage (UML) has risen to relative ubiquity in the IT
community. However, despite its status as an ISO
industry standard (International Organization for
Standardization, 2005), the UML is still evolving
to accommodate the changing needs of industry.
This development aims to ensure that UML re-
mains effective and relevant to the most current
developments in software engineering techniques.
This article charts the progress of this arguably
indispensable standard and discusses the ongoing
evolution in three sections: The Past, The Present,
and The Future. The Past section will detail the
reasons for which standardization was needed,
the history behind its inception and development,
initial reception from the user community and also
its initial effectiveness. The Present section then
describes the various changes between UML 1.0
and UML 2.5. The reasons behind these changes
and the effectiveness of them are then discussed.
Finally in The Future section, the article will
describe the current state of UML, predictions
for the next specification of UML based on the
Object Management Group documentation, and
also common problems and suggestions from
the wider community which may be addressed
in future iterations of the specification.

BACKGROUND

The Unified Modeling Language is a form of
notation that was developed with the core goal of

creating a standardized representation of general-
purpose models, with the focus of functionality
of these primarily being for software engineer-
ing and systems development. Despite this main
focus of approach in the specification design,
the language is meant to attain some level of ap-
plicability regardless of the subject matter. The
reason a modeling language was needed in order
to achieve this was to manage the complexity of
the subject at hand - whether it was system or
software design or another subject entirely. As a
model is by nature an abstraction of reality, it allows
the user to characterize the design of the subject
in an effective manner. This abstract model then
enables the user to better evaluate the subject and
communicate that in an efficient and meaningful
way rather than attempting to demonstrate their
intentions using the actual software or system in
question. In order to achieve this intended core
goal the language has been modified and refined
over time, resulting in evolutions of varying ef-
fectiveness and popularity.

THE EVOLUTION OF UML

The Past

In the late 1950s, the first object orientated pro-
gramming language, Simula was introduced, and
with it came “a powerful new combination of ideas
into structuring computer programs, including
instantiation of abstract data types, inheritance,
and polymorphism” (Cook, 2012, p. 471). To
accompany this new idea of object orientated

Rebecca Platt
Murdoch University, Australia

Nik Thompson
Curtin University, Australia

The Past, Present, and Future of UML

7482

languages, methods for designing software in
this object orientated way also started to emerge,
and in time they were referred to as modeling
languages. By the late 1980s there were more than
fifty separate modeling languages - each with their
own syntax, structure and notation. There were
many issues with this overwhelming variety of
languages and it has been noted that “such open-
ended approaches [could] affect and constrain
the system in unexpected ways or even result in
failure. For example, system development and
implementation failure rates remained stubbornly
high. Cost overruns and time overruns were still
the norm, rather than the exception” (Erickson &
Siau, 2013, p. 296). As it was humanly impossible
in this kind of environment for all system analysts
and other relevant personnel to be trained in all
methods, the lack of communication and techni-
cal understanding coupled with the fact that the
majority of the languages available were unable
to meet the demands required of them, led to
alarmingly high project failure rates.

This lack of standardization and communica-
tion was not only negatively affecting development
projects but also limiting the potential of object-
orientated technology in general. In response to
this very significant concern, The Object Manage-
ment Group (OMG) was founded in 1989. The
initial and presiding goal of OMG was to “create
a standard for communication amongst distributed
objects” (Cook, 2012, p. 472). This goal was in-
tended to foster progress toward a common object
model that would work on all platforms on all
kinds of development projects. In order to further
this goal specifically in the domain of modeling
languages, OMG launched the Object Analysis
and Design Special Interest Group to study design
methods. This is also the origin point from which
any Request For Proposals were issued.

Around the time that OMG was founded, a
separate company called Rational was also at-
tempting to implement a solution to the over
saturation of modeling languages in use. To this
end they recruited Grady Booch and James Rum-
baugh in 1996. These men were the creators of

two of the dominant modeling languages of the
time. Booch’s method was called Object-Oriented
Design (OOD) (Booch, 1991) and Rumbaugh’s
method was known as the Object-Modeling Tech-
nique (OMT) (Rumbaugh, Blaha, Lorensen, Eddy,
& Premerlani, 1990). They were soon joined by
Ivar Jacobson, whose Object-Oriented Software
Engineering (OOSE) method (Jacobson, 1992)
was also a prominent modeling language at the
time. “The Three Amigos” as they later came to
be known then set to work on the development
of the Unified Modeling Language. A potentially
universal standard form of notation with the intent
to create ease of communication and reduce the
risk of failure for projects, with human factors
considered above all as this had been identified as
a main failure point of previous projects (Erickson
& Siau, 2013).

The UML 0.91 specification was the initial
result of the unification of OOD, OMT, and OOSE,
a somewhat successful endeavor as each base
modeling language had unique strengths; Booch’s
OOD was good for low level design, Rumbaugh’s
OMT was effective for OO analysis, and Jacob-
son’s OOSE was good for high level design, as
well as allowing for the implementation of use
cases. Working with “The Three Amigos” were
the UML Partners; a software development team
who represented a range of different of vendors
and system integrators, who would collaborate to
propose UML as the standard modeling language
for the OMG (Kobryn, 1999). Representatives
from other companies (such as IBM, Microsoft
and Oracle) were consulted during the Object-
Oriented Programming, Systems, Languages and
Applications (OOPSLA) conference held that
year, with the outcome of these consultations
resulting in the UML 1.0 draft which was then
submitted to OMG in response to the Request
For Proposal. UML 1.0 was accepted by OMG
in November, 1997.

The initial response after the release of the
specification indicated that the Unified Modeling
Language was very effective, once the personnel
involved had made it past the difficult learning

 S

Category: Systems and Software Engineering

7483

curve of training in a new modeling language. In
fact there is speculation that the response towards
UML was actually too great - for while it was
proven to be much more effective than its prede-
cessors, it still had issues. The rapid uptake and
positive response meant that the uptake of UML
ended up growing at an alarming rate before it
had finished standardizing properly.

The Present

When initially accepted as a standard, UML 1.0
appeared to meet all stated requirements and
to be an effective modeling language. Since
then, however, a number of revisions have taken
place to alter the notation in order to fix various
shortcomings and to become more effective. For
example, some of the issues that were resolved
between UML 1.1 and UML 1.3 included the
lack of integration between certain model types,
the absence of certain modelers and that some of
the standard elements were named and organized
inconsistently. There was also trouble with the
architectural alignment – According to OMG “The
submitters fell short of their goal of implementing
a 4-layer metamodel architecture using a strict
metamodeling approach. Instead they settled for
the pragmatic, but less rigorous, loose (non-strict)
metamodeling approach. This “adversely affected
the integration of UML with other OMG model-
ing standards, such as the Meta Object Facility
(MOF)” (Kobryn, 1999, p. 31).

As it is, The Object Management Group over-
sees standardization and it is through their pro-
cesses that revisions of the UML are implemented.
There are two mechanisms for standard revisions;
RFPs and RTFs. The Request For Proposal (RFP)
is the primary mechanism for updating specifi-
cations, while Revision Task Forces (RTF) are
secondary. When a proposal is received, it is the
RTF that examines and votes on the validity of
it. The RTF is also able to recommend changes
to the proposal in order to clarify areas that may
be ambiguous. If the proposal is approved, then it
becomes OMG adopted technology. If the proposal

is not approved, then the RFP is reissued, with
changes made to it to reflect the reasons for the
last proposal failing.

Through the OMG system, a number of sig-
nificant changes have been made in response to
the some of the shortcomings identified in UML.
Between UML 1.1 and UML 1.2, the specification
was reformatted in order to better align with other
OMG specifications. Typographical and gram-
matical errors were also targeted in this revision.
Between UML 1.2 and UML 1.3, problems that
had occurred during the alterations of the last
revision were fixed, the activity graph notation
was completed, and the standard elements were
more formally organized. The revisions of the
specification were all rather minor after that, up
until UML 2.0 was released in 2005. The follow-
ing UML Specification to be released was UML
2.4.1, and unlike UML 1.x this specification
is organized into four sections. These sections
are called the Superstructure, the Infrastructure,
the Object Constraint Language, and the UML
Diagram Interchange. The Infrastructure “defines
the foundational language constructs required”
(OMG, 2011, p. 1). This is then balanced by the
UML Superstructure, which “defines the user
level constructs required” (OMG, 2011, p.1). The
current UML Specification in use is UML 2.5,
which was released in June 2015. This version
has been re-written to simplify the contents, in-
creasing readability of the document. Other major
changes include the removal of Infrastructure as
a separate section of the Specification, and also
“the compliance levels L0, L1, L2, and L3 have
been eliminated, because they were not found to
be useful in practise” (OMG, 2015a, p.11).

Studies have shown that the ongoing revision
implementation has been successfully achieving
the goal of standardization. As UML becomes
more refined, it also becomes more universally
accessible and accepted. A study found that 21%
of Australian Computing Society members used
UML frequently (Davies, Green, Rosemann, In-
dulska, & Gallo, 2006), further evidence of this
growing standardization was demonstrated by

The Past, Present, and Future of UML

7484

Dobing and Parsons (2006) who noted that class
diagrams were the most frequently utilized aspect
of UML as reported by 73% of participants. Since
these studies were conducted it has been demon-
strated that practitioners have been successfully
implementing the Unified Modeling Language
more effectively and frequently, to such a point
that it is now a part of many undergraduate uni-
versity curricula in Information Technology fields.
More recent studies have shown that the growth
and uptake of UML has persisted over time (e.g.
Dobing & Parsons, 2010; Budgen, Burn, Brereton,
Kitchenham, & Pretorius, 2011).

The Future

The next specification for UML, UML 2.6, cur-
rently has no known set or speculated release date.
As it is too early in the development process for
even the unofficial release specifications to be
revealed to the general public, very little is known
about this future specification update.

Based on comments regarding UML 2.6, it
appears that the next version will cover minor
revisions to the 2.5 specification, including fix-
ing two sets of syntactical errors currently shown
in the UML 2.5 metamodel. This expectation of
only minor revisions is further supported by the
list of issues shown to be resolved by the UML
2.6 Revision Task Force, which includes such
changes as “Clarification of use case semantics”
and “Parameterization of lifelines”, “such that
Interactions can be used in slightly different
context” (OMG, 2015b).

Issues, Controversies, Problems

Despite years of revision that have successfully
yielded incremental improvements to the specifi-
cation, problems remain that need to be addressed.
The standard elements are still rather “bloated”
and they contain a level of inconsistency in both
naming and organization. This level of complex-
ity and the inconsistencies introduced during
revisions have been detrimental to the overall

readability of the specification. There is a concern
that the design of the notation is not sufficiently
user-friendly, which would discourage potential
users from adopting and using UML in favour
of other simpler alternatives such as DOT graph
description language, as described by Erickson
and Siau (2013).

Another potential issue that needs to be ad-
dressed concerns the cyclic nature of specification
revisions. In the process of updating UML to at-
tempt to deal with the above issues and problems,
excessive addition, removal and alteration of
major concepts could affect the core structure of
UML. The current method of revision leaves the
core structure vulnerable. As previously stated,
the UML focus of functionality was primarily for
software engineering. As a result, software tools
offer extensive support for UML when used with
this focus in mind. However there is very little
support in software tools for any other application,
despite the language’s goal of being a standard-
ized representation of general-purpose models.

Solutions and Recommendations

The issue of “bloating” regarding the elements
of UML is due to the inconsistent naming and
organization within the standards. By phasing in
more consistency to the various aspects of future
specifications of the language, the volume of
elements would be reduced and bloating would
cease to be an issue. Reduction of elements and
increase in consistency would also aid the uptake
of the language among new users. Simplifying the
language (and the specification documentation
is relation to this) would increase the readability
of it, and encourage more users to utilize UML
instead of another modeling language. Also, core
structure vulnerability can be corrected by the
introduction of protocols within the specification
revision procedure, to ensure that this remains
unaltered. Support for non-software engineering
projects is difficult to implement currently due
to the fact that UML implementation seems to be
“tool-based.” If all of the various tools used for

 S

Category: Systems and Software Engineering

7485

UML that are widely recognized started creating
more support for the language in terms other than
software engineering, then the specification would
broaden to include this more as a result.

FUTURE RESEARCH DIRECTIONS

It has been shown that UML has been implemented
within the field of software engineering increas-
ingly over the years, moving from relatively low
industry usage (e.g. Davies et al, 2006) to the
present state where the growth in UML usage
has led to an abundance of tools and software to
better support the language. However, research
into the Unified Modeling Language has been
limited in recent years. There have been a few
surveys conducted based on the use of UML in
terms of software engineering and development,
but very little in terms of its other applications
as a general purpose modeling language. Current
study seems to focus on the compliance of tools to
UML, rather than the compliance of UML to its
intended purpose. Future surveys of the adoption
of UML (both within and outside of the field of
software engineering) would be well served to
include elements concerning the perceived ef-
fectiveness of the modeling language by users in
real world situations. Another possible research
direction may examine how the modeling language
has affected development practices and utilization
of techniques, and whether the overall project suc-
cess rate has increased as a result of this.

CONCLUSION

The Unified Modeling Language may be the cur-
rent industry standard, but it is still evolving and
transitioning through constant revisions of the
specification. These stages of revision are imple-
mented to ensure that the UML remain effective
and viable in the demanding and rapidly changing
landscape of software engineering. This article

examined this evolution in terms of three main
periods described as The Past, The Present, and
The Future. The Past section detailed the reason
behind which standardization was needed, the
history leading up to and including the develop-
ment of UML. The initial reception from the user
community and initial effectiveness were also
discussed. The Present section then described the
various changes between UML 1.0 and UML 2.5
and the reasons behind these changes and their
ongoing effects. Finally, The Future section de-
scribed the current state of UML, the expectations
for the next specification of UML and also some
open issues from the wider community which are
yet to be addressed. Some possible solutions and
future research directions were also presented
in light of these issues. In conclusion the Uni-
fied Modeling Language has proven itself to be
an effective standard for communication and it
will maintain its significant foothold in software
engineering for the foreseeable future. However,
the requirement for continual revisions to the
specifications will also remain as the expected
functionality and needs of UML practitioners will
continue to change over time.

REFERENCES

Avison, D. E., & Fitzgerald, G. (2003).
Where now for development methodologies?
Communications of the ACM, 46(1), 78–82.
doi:10.1145/602421.602423

Booch, G. (1991). Object-oriented design with
application. Benjamin-Cummings.

Budgen, D., Burn, A. J., Brereton, O. P., Kitch-
enham, B. A., & Pretorius, R. (2011). Empirical
evidence about the UML: A systematic literature
review. Software, Practice & Experience, 41(4),
363–392. doi:10.1002/spe.1009

Cook, S. (2012). Looking Back at UML. Soft-
ware & Systems Modeling, 11(4), 471–480.
doi:10.1007/s10270-012-0256-x

The Past, Present, and Future of UML

7486

Davies, I., Green, P., Rosemann, M., Indulska,
M., & Gallo, S. (2006). How do practitioners use
conceptual modeling in practice? Data & Knowl-
edge Engineering, 58(3), 358–380. doi:10.1016/j.
datak.2005.07.007

Dobing, B., & Parsons, J. (2006). How UML
is used. Communications of the ACM, 49(5),
109–113. doi:10.1145/1125944.1125949

Dobing, B., & Parsons, J. (2010). Dimensions
of UML Diagram Use: Practitioner Survey and
Research Agenda. In K. Siau & J. Erickson
(Eds.), Principle Advancements in Database
Management Technologies: New Applications and
Frameworks (pp. 271–290). Hershey, PA: IGI.
doi:10.4018/978-1-60566-904-5.ch013

Erickson, J., & Siau, K. (2013). Unified Model-
ing Language: The teen years and growing pains.
Human Interface and the Management of Infor-
mation. Information and Interaction Design (pp.
295-304). Berlin: Springer.

Fowler, M., & Scott, K. (2003). UML Distilled.
Boston: Addison-Wesley.

International Organization for Standardiza-
tion. (2005). ISO/IEC 19501:2005. Retrieved
2nd Nov 2013, from http://www.iso.org/iso/
home/store/catalogue_tc/catalogue_detail.
htm?csnumber=32620

Jacobson, I. (1992). Object-oriented software
engineering: a use case driven approach. New
York: Pearson Education.

Kobryn, C. (1999). UML 2001: A standardization
odyssey. Communications of the ACM, 42(10),
29–37. doi:10.1145/317665.317673

Lucas, F. J., Molina, F., & Taval, A. (2009).
A systematic review of UML model consis-
tency management. Information and Software
Technology, 51(12), 1631–1645. doi:10.1016/j.
infsof.2009.04.009

Management Group. (n.d.). Retrieved 10th Nov
2013 from http://www.omg.org/spec/UML/2.4.1/
Infrastructure

Miles, R., & Hamilton, K. (2006). Learning UML
2.0. O’Reilly.

MOF Revision Task Force (1999). Meta Object
Facility Specification v. 1.3. Document ad/99-06-
05. Object Management Group.

OMG. (1999). Policy and procedures of the OMG
technical process. Document pp/99-05-01. OMG.

OMG. (2011). OMG Unified Modeling Language
(OMG UML), Infrastructure, v2.4.1. OMG.

OMG. (2013). OMG Unified Modeling Language
(OMG UML), v2.5 FTF Beta1. Object Manage-
ment Group. Retrieved 10th Nov 2013 from http://
www.omg.org/spec/UML/2.5

OMG. (2015a). OMG Unified Modeling Language
(OMG UML), v2.5. Object Management Group.
Retrieved 4th Oct 2015 from http://www.omg.org/
spec/UML/2.5

OMG. (2015b). Issues for UML 2.6 Revision Task
Force Mailing List (OMG UML). Object Manage-
ment Group. Retrieved 4th Oct 2015 from http://
www.omg.org/issues/uml2-rtf.open.html

Pilone, D., & Pitman, N. (2009). UML 2.0 in a
Nutshell. O’Reilly Media.

Rumbaugh, J. R., Blaha, M. R., Lorensen, W.,
Eddy, F., & Premerlani, W. (1990). Object-oriented
modeling and design. Prentice-Hall.

ADDITIONAL READING

Alhir, S. S. (2003). Learning UML. O’Reilly.

Álvarez, A. T., & Alemán, J. L. F. (2000). For-
mally modeling UML and its evolution: A holistic
approach. In S. F. Smith (Ed.), Formal methods
for open object-based distributed systems IV (pp.
183–206). US: Springer. doi:10.1007/978-0-387-
35520-7_9

 S

Category: Systems and Software Engineering

7487

Bennett, S., McRobb, S., & Farmer, R. (2006).
Object-oriented systems analysis and design us-
ing UML (Vol. 2). UK: McGraw-Hill Berkshire.

Eriksson, H.-E., & Penker, M. (1997). UML toolkit.
New York: John Wiley & Sons, Inc.

Eriksson, H.-E., & Penker, M. (2000). Business
modeling with UML. Chichester: Wiley.

Fowler, M. (2004). UML Distilled: A Brief Guide
to the Standard Object Modeling Languange.
Boston: Addison-Wesley Professional.

Kobryn, C. (1999). UML 2001: A standardization
odyssey. Communications of the ACM, 42(10),
29–37. doi:10.1145/317665.317673

Miles, R., & Hamilton, K. (2006). Learning UML
2.0. California: O’Reilly.

Object Management Group. (2007). Unified Mod-
eling Language (OMG UML): Superstructure.
Massachusetts: Object Management Group.

Pooley, R., & Stevens, P. (1999). Using UML:
Software Engineering with Objects and Rules.
Boston: Addison-Wesley Longman.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999).
The Unified Modeling Language reference man-
ual. Boston: Addison-Wesley Longman.

Satzinger, J. W., Jackson, R. B., & Burd, S. D.
(2005). Object-oriented Analysis and Design:
With the Unified Process. Boston: Thomson
Course Technology.

Satzinger, J. W., Jackson, R. B., & Burd, S. D.
(2011). Systems analysis and design in a changing
world. Boston: Cengage Learning.

KEY TERMS AND DEFINITIONS

Model: A conceptual diagram used to repre-
sent a system.

Object Management Group: An organiza-
tion created with the goal to determine a standard
method of communication between distributed
objects.

OOPSLA: “Object-Oriented Programming,
Systems, Languages and Applications” – an an-
nual research conference run by the Association
for Computing Machinery.

Software Engineering: The application of
systematic methods and approaches for the de-
velopment and maintenance of software artifacts.

Specification: The set of requirements that
must be satisfied in order for any model to comply
with the current standards of UML.

Unified Modeling Language: A form of
notation developed with the core goal of creating
a standardized representation of general-purpose
models, with the focus of functionality primarily
being for software engineering.

