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Abstract—Affective computer interfaces improve human-

computer interaction by enabling the communication of the 

user’s emotional state. To this end, subtle non-verbal methods 

of communication provide a rich source of information which 

may provide valuable affective context to the human-computer 

interaction. Of particular note are physiological indicators of 

affective state, as these are objective in nature and have been 

demonstrated to be successful in many studies. Physiological 

computing may be viewed as a data acquisition and signal 

processing task whereby the electrical impulses or 

biopotentials created by the body are captured, analyzed and 

recorded in a suitable format for later communication. Whilst 

there are a number of commercially available hardware 

platforms to support physiological data acquisition, these all 

possess limitations in a few distinct areas. Not least of these is 

the physical form factor. For such devices to be embedded and 

integrated into the next generation of computer interfaces, an 

open physiological platform is required. This will enable future 

development to build upon this foundation and concentrate on 

novel and unique form factors and implementation 

environments. This paper describes the development and 

implementation of an open affective platform. This hardware 

and software solution provides the necessary functionality to 

measure and describe the users underlying affective state in 

terms of its component dimensions. This data may then be 

communicated to other application software, or modules 

within a larger affective computing application.  

Index Terms- affective computing, physiology, biofeedback 

I. INTRODUCTION 

Affective computing is defined as ‘computing that 

relates to, arises from, or deliberately influences emotions’ 
[1]. The goal of improving the interaction between users and 

computers requires that emotions be taken into account in 

this interaction. To this end, it is necessary to have an 

understanding of what emotions are, how they can be 

identified and what the implications of various emotional 

patterns are for that particular situation. Emotional state is 

often implicitly communicated between humans in a 

multitude of ways such as  facial expression, vocal 

intonation or gesture, as well as being reflected in less 

apparent changes in physiology such as respiration, heart 

rate or electrodermal response [1]. It is widely accepted that 

all psychological events have some corresponding 

physiological event [2] and it is these physiological changes 

that may provide continuous feedback on the state of the 

human computer interaction. In order for a computer to 
respond accordingly to this non-verbal communication, it 

too must have a means of acquiring emotional information 

from the user. Physiological signals are not generally 

viewed as an input method for a computer, but as computers 

become ubiquitous and become integrated into everyday 

devices, vehicles, clothing and our surroundings, the 

opportunity for greater physical contact between user and 

machine increases and makes such input paradigms 

increasingly viable. The surge in uptake of personal and 

wearable computing devices, and the widespread use of the 

smartphone hold tremendous potential for such embedded 

physiological computing interfaces to become reality. Such 

interfaces would be invisible to the user, and provide a rich 

and valuable source of communication to enhance all 

aspects of human-computer interaction.  

This paper describes the development and 

implementation of an affective platform that supports 
physiology based inference of affective state. This solution 

comprises of a relatively low cost and easily replicable 

platform that demonstrates loose coupling and minimal 

hardware constraints making it an ideal foundation for the 

next generation of embedded and mobile affective 

platforms. The solution also addresses many of the 

shortcomings of the commercially available biofeedback 

hardware, and has proven to be well suited for deployment 

in a physiological computing research environment. 

The remainder of this paper is structured as follows: 

Section II discusses how affective state may be described in 

terms of component dimensions, and how nonverbal signals 

such as physiology may provide information about a 

particular dimension of affective experience. Section III 

expands on the topic of physiological data acquisition and 

highlights some of the issues potentially associated with the 

reliance on closed and commercially available data 
acquisition platforms. Section IV describes in detail the 

hardware and software design and implementation of an 

affective platform that enables the affective state to be 

inferred in terms of its two component dimensions. Finally, 



Section V presents some concluding remarks about the 

affective platform that has been introduced. 

II. INFERRING AFFECTIVE STATE 

Affective states are internal and involve cognitive 

processes and are therefore not directly accessible to anyone 

other than the one experiencing them. Therefore it is only 

the observable manifestations of the affective state that may 

be used for the process of inference. This is where the 

subtle, non-verbal indicators of underlying affect become 

especially useful. According to dimensional models of 

emotions, it is assumed that emotions can be represented in 

terms of a number of component dimensions (e.g. [3]). This 

viewpoint has the benefit of removing the need to categorize 

emotional experience within pre-defined boundaries, and 

may thus allow for a more fine-grained level of description. 
At the most fundamental level, an emotional state may be 

described in terms of two dimensions. The 

arousal/activation dimension describes the intensity or 

strength of the emotion; the valence dimension describes 

whether the state being experienced is positive or negative. 

Thus, any approach to affect inference must incorporate at a 

minimum the means of sensing these two dimensions. 

Physiological indicators have long been known to be 

sensitive to mental events such as positive and negative 

emotions, changes in workload and cognitive engagement 

[4]. The use of physiological measures as non-verbal 

indicators of affective state has several advantages. They 

may be obtained without interrupting the participant from 

their task or disturbing their concentration, and the method 

does not rely on a (subjective) memory of the experience 

[5]. Furthermore, indirect or self-report measures of affect 

have been shown to have some amount of method bias [6] 
which may cause certain emotional states to be over or 

under reported by the participants. As physiological 

responses are involuntary and often very sensitive, the effect 

of deception on the part of the participant is also negligible 

[7].  

The acquisition of physiological data most often starts 

with electrodes placed on the skin. The skin may be 

prepared by the experimenter by cleaning or roughening the 

contact area. Next, a metal electrode is attached with the aid 

of an adhesive collar or Velcro strap. Often conductive 

pastes or gels are used to improve the electrical contact 

between the skin and the electrode. 

From the electrodes, electrical signals pass through the 

leads to the measuring equipment – high gain amplifiers and 

filters may be employed to boost the weak signal and 

attenuate any interference that may be picked up during the 

measurement process. The types of measurement being 
made generally dictate the site where the electrodes are 

attached. For instance, cognitive activity might be measured 

on the scalp or via facial muscle movement on the brow or 

corners of the mouth whereas skin conductivity may be 

measured on the fingertips or palm. Many sensors measure 

biopotentials: biological electrical signals transmitted by the 

nervous system during normal activity. Sensors may also 

use other characteristics to detect physiological processes, 

such as the movement the chest during breathing or the 

pumping of the heart.  

III. PHYSIOLOGICAL DATA ACQUISITION 

The collection and analysis of physiological data may be 

viewed as a basic data acquisition and signal processing 

problem, with many of the same associated constraints and 

requirements. There are a number of commercially available 

biofeedback devices which are commonly cited in research. 

For basic physiological data acquisition of signals such as 

skin conductance or heart rate, the commercial platforms 

developed by ProComp and BioPac are prominent [8] and 

have been used in a number of studies of affective 

computing and psychophysiology (e.g. [9-12]). 

These devices are well suited for a research environment 
as they both provide an established and reliable 

measurement platform which is ready to operate with a 

minimum of hardware setup and calibration. However, 

commercially produced hardware such as these devices is 

generally designed to cater for the most commonly used 

applications, and may not offer a great deal of freedom to 

the researcher to explore novel measurement techniques or 

operating environments. Furthermore, there is often no 

straightforward way to extend the functionality of a 

commercial system as knowledge of the inner workings of 

these closed and proprietary systems is not freely available.  

In some cases there are severe limitations present in these 

devices. The most apparent limitations are related to the 

choice of physical sensors and form factors, as these devices 

are designed only to operate with the particular choice of 

hardware sensors that are provided by the manufacturer. A 

review of the current offerings from ProComp and BioPac 
also revealed a substantial limitation in that many types of 

advanced data analysis (such as the analysis of heart rate 

variability) were only supported in off-line processing 

mode.  

A more thorough study of the functionality supported by 

ProComp and BioPac devices for EDA and HRV measures 

was undertaken as part of this research, to identify any 

issues or limitations in the way these measures are 

implemented. EDA measures appeared to be relatively well 

implemented in both platforms, although there is little room 

for data processing outside of a few pre-set options, and the 

choice of electrodes and sensor hardware is limited to those 

from the original equipment manufacturer. 

HRV measurement, being a more complex task, had more 

differences in the implementation and some limitations were 

identified. The most significant issue with both platforms, is 

the fact that the associated HRV processing modules are 
required to function in off-line mode and in some cases 

require the operator to carry out extensive manual 

processing on the data before use [13]. This renders this 

measure unsuitable for a system that aims to adapt and 

respond in real-time.  

Whilst this above limitation alone excludes the potential for 

use of these two devices in a real-time system, other aspects 



of the platforms were also evaluated. The HRV calculation 

relies on blocks of data and this block size ultimately 

influences the resolution (and responsiveness) of the system. 

The ProComp unit provides a few fixed pre-sets for data 

block size such as 3, 5 or 10 minutes and nothing in 

between is permitted [14]. The BioPac technical manual 

indicates that other block sizes are available as the user is 

able to drag a selection box to bound the data on which they 

wish to process [15]. 
In terms of sensor hardware both devices suggest that a set 

of ECG chest electrodes is best suited for this kind of 

analysis. However the ProComp unit also permits a much 

less intrusive fingertip pulse sensor to be used for the 

purposes of collecting HR (variability) data [16]. Both 

devices are somewhat restrictive as the manufacturers 

typically provide only one or two options of sensor for each 

physiological signal, and the potential for evaluating novel 

form factors or sensor arrangements is severely impaired.   

A final high level concern regarding the use of 

commercially available biofeedback hardware is that of 

transferability. For any findings to ultimately be applied to 

end user applications such as wearable and embedded 

devices supporting body area networks, there must be less 

reliance on commercial hardware, and more consideration 

given to the whole system and how the various components 

will fit together in an open architecture. 
The platform described in this paper addresses several 

requirements. Firstly the need for real-time operation is 

addressed. This was considered to be an imperative 

requirement as the developments are to be transferrable to 

adaptive and autonomous systems in the future. Secondly, 

the need for flexibility in terms of operational hardware and 

environment was addressed. This was also considered to be 

an imperative requirement as growth and development in 

this area depends on the ability for research to be transferred 

to new environments and devices. This flexibility enabled 

the investigation of several sensors designs and form factors 

and processing algorithms.  

IV. AN OPEN AFFECTIVE PLATFORM 

A high-level model for affective computing applications 

has been previously developed; this model, known as the 

Affective Stack Model, adopts a modular approach and 

describes the entire affective computing application as a set 

of loosely coupled functional components [17]. One of these 

components, the Affective Platform, is responsible for the 

acquisition of sensory data from the user, and the associated 

translation of this data into a usable form for other 

components.  

The following sections describe the development and 
implementation of an instantiation of this Affective Platform 

component. This has been successfully used as a standalone 

platform for physiological data acquisition and processing, 

as well as a functional component in a larger affective 

computing application. This solution addresses the 

limitations identified within the commercially available 

physiological measurement platforms and provides a robust 

test-bed in which future studies may be conducted.  

This implementation of the Affective Platform 

component was intended to operate in a relatively controlled 

laboratory setting, with a set of well-defined system 

interfaces. Therefore, for this implementation, a decision 

was made to adopt the comma separated value (CSV) 

format for any data log files as this presents the least 

complex format with minimal data requirements. However, 
libraries are present within the development environment to 

seamlessly support output in a number of open formats such 

as XML, as well as proprietary formats such as Excel 

worksheets. In general, as potential implementation 

environments include wearable and unwired form factors, it 

is desirable to ensure that data requirements are minimized 

and simplified where appropriate.  

The IEEE 802.15 body area network standard [18] is 

designed to facilitate short distance low power 

communications within or around the human body. The use 

of easily interpretable and non-proprietary data formats aims 

to support future development by enabling the data from the 

Affective Platform component to be easily transmitted over 

a body area network by streaming over an appropriate 

wireless communications medium.  

A. Overview 

To support future studies on affective computing it was 
desirable to be able to relate physiological data to the 

various activities that the participants are performing. 

Therefore it was essential that the physiological 

measurement platform had provisions for accurate 

timekeeping and associated analysis. LabVIEW is a 

graphical programming environment that is widely used in 

both industry and research, and has emerged as the standard 

for data acquisition software [19]. LabVIEW supports many 

modes of data acquisition and provides functionality for 

advanced signal processing and manipulation. The use of 

this environment made it possible to combine both 

physiological data acquisition and signal processing into 

one application running on a single machine to eliminate 

any potential timing or data synchronization issues. 

Two physiological sensors were developed in this 

implementation, with the intention of inferring the 

dimensions of arousal and valence of the participant’s 
emotion as per the circumplex model of affect [3]. Given the 

vast number of potential areas of biofeedback, the selection 

of physiological signals to monitor was constrained by the 

intended future applications of the work. Firstly, one of the 

strengths of physiological measures of affect is the natural 

and objective way that data can be obtained, generally 

without interrupting or distracting the user from the task 

they are carrying out. Therefore the sensors should be both 

unobtrusive and not hinder normal operation of the 

computer. As it is desirable that future affective interfaces 

should potentially be invisible to the user, additional 

consideration was given to choose sensors that hold the 

possibility to be later embedded into existing hardware, such 

as keyboard or mouse. 



Secondly, as noted above, in the interests of producing 

an open and easily replicable solution an attempt was made 

to minimize the use of specialized or costly biofeedback 

equipment and to utilize more generic analogue to digital 

conversion hardware for data acquisition. An approach to 

limiting the extent (and subsequent cost) of equipment is to 

perform as much of the work in software as possible. Thus 

physical hardware built was kept to a minimum to facilitate 

transference to new applications and environments. 

B. Physiological Measures 

Electrodermal activity (EDA) is an established indicator 

of emotional arousal, and fulfils the criteria of being 

unobtrusive, straightforward and low cost to implement. 

EDA measurement simply requires skin contact, with little 

in the way of hardware or software. Tonic (background 

level) skin conductance varies with psychological arousal, 

rising sharply when the subject awakens and rising further 

with activity, mental effort, or especially stress [20]. Thus 

an EDA sensor was developed to provide data to infer 

arousal.  

Heart rate (HR) based measures may be used as an 

indicator of emotional valence. These are commonly 

measured using an electrocardiogram using electrodes on 

the chest or a chest strap. This is quite an intrusive means of 

physiological measurement and this detracts from its 

usefulness, especially for an affective computing application 
[21]. HR based measures commonly include basic 

descriptive data such as instantaneous, minimum and 

maximum HR and patterns of change. An issue associated 

with HR based measures is that HR is influenced by many 

outside factors in addition to affective state. Yannakakis, et 

al. [22] identified frequency domain analysis of heart rate 

variability (HRV) as a more suitable approach that may 

provide more information than the basic HR related 

measures. This form of analysis makes it possible to observe 

specific frequency bands which correspond to certain 

underlying processes; for example, to discern between 

physiological changes due to physical exertion as opposed 

to affective state. 

It was decided to address both of these points with the 

development of a novel photoplethysmogram (PPG) based 

sensor and associated signal processing software. The PPG 

sensor is a typically only a few mm across and utilizes 
reflected light to infer measurements. This is the most 

unobtrusive form of sensor, and requires only skin contact 

to operate. Output from this sensor may then be analysed in 

software to perform the frequency domain analysis of HRV 

as mentioned above as a potential indicator of emotional 

valence. 

The use of EDA sensors is quite well-established, and 

consequently the design and development of these sensors is 

relatively well documented (e.g. [23]).  The use of HRV, in 

particular the frequency domain measure implemented in 

this platform, is much less well understood and it is 

envisaged that the discussion of the topic in this paper will 

support future research on this measure. The following 

sections detail the two physiological sensors. The discussion  

 

of each sensor is organized in terms of nomenclature, 

hardware, software and outputs of the platform.  

1) Electrodermal activity sensor 
The EDA signal is an indicator of skin conductivity and can 

be measured via a pair of electrodes. EDA tends to increase 

when a person is startled or experiences anxiety and is 

generally considered to be a good measure of a person’s 

overall level of arousal [4]. 

a) Nomenclature 

Conductance is usually measured in ‘Siemens’ (S) units. 

As the conductivity of the skin is very small, values are 

usually given in micro Siemens (µS). In measuring skin 

conductance, there are two types of distinguishable features, 

phasic and tonic ones. A tonic value is a pattern of EDA that 
shows a certain amount of continuity over time. The tonic 

component of skin conductance is called the skin 

conductance level (SCL). This can be thought of as a 

‘baseline’ indication of the person’s overall arousal, and this 

gradually changes with time. Phasic skin conductance is the 

type that shows changes in a short time frame, often as a 

response toward a specific stimulus. If a stimulus elicits a 

response, the skin conductance rises for a certain time 

period and then returns back to the normal (SCL) level. This 

is called a skin conductance response (SCR). Sometimes, 

even if no stimulus is presented there are variations in the 

skin conductance, these are called nonspecific skin 

conductance responses (NS-SCR) [24]. 

b) Hardware 

EDA sensing requires a steady current to be passed 

between the two electrodes, and any fluctuations to be 

amplified to produce a clear output waveform.  As the 

signals being measured are very small, silver-silver chloride 

electrodes have been identified as being suitable for this 
purpose as these do not polarize when current is passed 

through them [25].  The design of the EDA sensor hardware 

described is an ‘instrumentation amplifier’ design used in 

many high-gain operational amplifiers. A regulated voltage 

is applied across the finger electrodes which form one arm 

of a Wheatstone bridge. Any variations in skin conductance 

alter the output of the Wheatstone bridge which can be seen 

as a varying output voltage. 

The outputs of the bridge are fed through a pair of 

voltage followers to buffer the output and produce a cleaner 

signal; this is then amplified to boost the signal to suitable 

levels for the data acquisition equipment to pick up. This 

architecture is illustrated in Fig 1. Any remaining processing 

and logging is done in software.  The EDA amplification 

 
Fig. 1: Block diagram of EDA sensor 



circuit has been housed in a metal casing and cabling was 

shielded wherever possible to reduce the interference 

induced from power lines or nearby equipment which may 

introduce artifacts in the output waveform.  

Initial tests revealed an unacceptably high level of noise, 

to the extent that the signal was being obscured to an 

unusable level. The source of the noise was narrowed down 

to switching noise generated by the AC-DC power supply in 

use. This was replaced with a rechargeable Ni-Cd DC 
battery pack to ensure a stable DC current. A test with the 

actual sensor using a fixed resistance in the place of finger 

electrodes showed a stable output with high accuracy of +/- 

2mV which is several orders of magnitude smaller than the 

signals being observed.  

A further observation during initial testing was that the 

output of skin conductance values was nonlinear at 

electrode voltages higher than 1V. Therefore the electrodes 

were operated with a voltage of 0.5V to keep the results 

consistent. A survey of published recommendations for 

electrodermal measurements confirmed that 0.5V is the 

most suitable voltage to implement [25-27]. 

c) Software 

Data was sampled from the hardware sensors using a 

National Instruments NI9215 16 bit data acquisition device 

using LabVIEW development system software. Sampling 

was carried out at 1,000 samples per second (1 KHz) for 

initial processing, and this was later down sampled as the 

low frequency signals being measured did not call for such a 
high sample rate. The main software tasks were to acquire 

this signal and to ‘clean’ up the input signal with filters 

before committing it to storage. During development of the 

software component, data from initial test runs was studied 

to evaluate the quality of the data acquisition and 

physiological recording.  

Radio frequency (RF) interference presents a challenge for 

the accuracy of data acquisition, and this is particularly 

significant if the signals being measured are of a small 

magnitude to begin with. The equipment and cabling was 

well shielded, however pilot testing revealed that noise was 

being picked up and appearing in the recorded data. Spectral 

analysis revealed that most of this noise was in a specific 

frequency band, with a strong component of 50-60Hz AC 

‘hum’ induced from nearby power lines. A low pass filter 

was then developed to attenuate this noise. Since the 

baseline voltage from the sensor was the only feature of 
interest, a third order Butterworth low pass filter was 

implemented with a cut off frequency of 4Hz. This yielded a 

favourable output wave form which would be useful for 

logging and analysis. Given that the data of interest was 

slow changing (sub 4Hz frequency), the 1 KHz sample rate 

would produce more data points than required for future 

analysis, therefore sample compression was used to reduce  

 
 
the number of data points before logging these values to 

disk.  

The down sampled rate of 50 samples per second was still 

higher than strictly required but in the interests of 

maintaining a high resolution picture of the input data for 

future analysis, this sample rate was selected as the ‘soft’ 

limit, and a provision was made in software to enable the 

operator to easily adjust the sample rate should the need 

arise at run time. The main functional software components 

are illustrated in Fig. 2. 

d) Processing and output 

The software created a visual output which was suitable 

for calibration and real time monitoring, as well as a log file 

(termed ‘Raw EDA Log’ in Fig. 2). Graphical output 

consisted of a real time display of the sensor output as well 

as a timeline plot to display trends over a user specified time 

period. The visual display was invaluable when setting up 

the equipment and also when developing the filtering 

mechanisms for noise and error rejection.  
The output streamed to file consisted of a series of 

timestamps and the 5 data points that were taken since the 

previous output timestamp. Graphical output was also 

provided to plot the signal over an extended period. This 

made it possible to visually identify any areas of interest 

within the data or any possible errors caused by movement 

of the sensors. 

As the relation between the bridge output and the 

unknown resistance is well understood and described by 

circuit laws [28], it is possible to translate the ‘Raw EDA 

Log’ output into actual skin conductance values. This 

enables the sensor output to be converted into an actual 

value for skin conductance in either real-time or offline 

modes depending on implementation requirements. 

 

2) Photoplethysmogram 
The PPG provides a measurement of arterial blood flow, 

inferred from light absorption rather than electrical activity. 

In a clinical environment, a common application of this 

technique is to measure blood oxygenation using a pulse 

oximeter. This works by comparing the ratio of light 

absorption at two different wavelengths. For the purposes of 

this research, data about blood oxygenation was not 
required. Instead the desired output was a clear waveform 

corresponding to the blood flow in under the sensor. 

Furthermore, in order to make the device as unobtrusive as 

 
 
Fig. 2: EDA software functional components 

 



possible, a reflectance configuration was used whereby the 

light is measured as it reflects off the skin rather than 

passing through. This enabled the construction of a sensor 

which required contact only on one side of the fingertip.  

The output waveform from this sensor follows the flow of 

blood in the fingertip, and peaks and troughs correspond to 

the heart beats. From this output waveform post-processing 

was carried out to extract the HR and HRV. 

a) Nomenclature 

The PPG produces a sinusoidal waveform output which 

corresponds to the light absorbance of blood flowing 
beneath the sensor. Within this waveform are several peaks, 

the strongest of which may simply be thought of as a 

representation of one heartbeat. This peak is labelled P, and 

for the purposes of calculating HRV this may be used in the 

same way as the main (R) peak of an electrocardiogram 

[29]. As the PPG peak is being used as an analogue for the 

electrocardiogram peak, the remainder of this paper will 

continue to refer to R to remain consistent with the 

published literature as this traditionally refers to 

electrocardiogram data. 

For HRV the interval between successive beats is 

measured, this is known as the RR interval. If the variance is 

expressed in terms of the power spectral density function 

(PSD), this gives an absolute value of power (variability) in 

units of milliseconds squared. PSD simply indicates the 

distribution of signal power in the frequency domain. 

Therefore the total HRV is equal to the total power given by 
the PSD function, and may be considered analogous to the 

variance of the intervals between heartbeat events. 

However, using the PSD function to observe variability 

allows a finer level of understanding of the underlying 

factors contributing to the changes in heart rate. This is done 

by decomposing the PSD result into certain frequency bands 

of interest.  

b) Hardware 

For this PPG implementation, the reflectance method 

was adopted in which the light source and receiver are 

positioned in the same plane. The main advantage of this 

being that a single flat surface sensor may be physically 

positioned in a multitude of ways.  

It has already been demonstrated that the reflectance 

method may be used to gather sufficiently accurate data to  

infer frequency domain information such as breathing rate 

[30] or HRV [31] and it is therefore a suitable approach to 
implement. 

The complexity of the sensor hardware was deliberately 

minimized where appropriate and the majority of the work 

was done in software. The sensor was based around a 

Vishay TCRT1000 reflective optical sensor with transistor 

output [32]. The TCRT1000 has a compact construction 

where the emitting light source and the detector are arranged 

in the same direction to sense the presence of an object 

using the reflective infra-red beam from the object. A 

regulated 12V supply is fed to the light emitter portion of 
the TCRT1000, reflected infra-red light is picked up by the 

detector and the output is switched by the variations in this 

light source. 

The operating wavelength is 950nm and the detector 

consists of a photo transistor. This made it suitable to be 

used as a PPG as the light level (and thus the voltage output 

by the phototransistor) changes as the blood is pumped by 

the heart. A block diagram of the main functional hardware 

components is given in Fig. 3. 

c) Software 

The output voltage supplied by the TCRT1000 provides 

the input into the National Instruments NI9215 data 

acquisition device. Data is sampled at 1 KHz and the 

resulting waveform is conditioned to make it suitable for 

analysis. The first step was to remove noise and interference 

from nearby mains power lines. As the signal of interest is a 

periodic signal corresponding to a human heartbeat it was 

appropriate to use a band pass filter and reject all signals 

that lie outside a specific range of frequencies. A second 
order Butterworth infinite impulse response filter was 

implemented with a lower cut off frequency of 0.7Hz and an 

upper cut off frequency of 5Hz. This yielded a clean signal 

suitable for logging and later analysis. The resulting signal 

is a sinusoidal waveform with peaks corresponding to heart 

beat events.  

As the timing of heart beats is the primary data of 

interest, a peak detection mechanism was implemented to be 

triggered whenever an R peak occurred in the waveform. To 

make the peak detection more robust against noise, any 

peaks which lasted for under a threshold of 3ms were 

excluded. Each time the peak detector was triggered, a 

timestamp was taken from the computer’s internal 

millisecond timer. This was compared to the timestamp 

taken when the software was first run to generate a list of 

the points (in seconds) when heart beats occurred. From this 

point on, the array of heart beat timestamps could be used to 
perform any future calculations without having to process 

the input waveform any further. This had the dual benefit of 

increasing processing speed (as real time signal processing 

tasks are very CPU intensive), whilst also allowing the raw 

data to be logged to file unaltered for future analysis and 

study. 

As a PPG can be somewhat sensitive to movement or 

false readings, steps were taken to improve the reliability of 

the peak detection routine. Initial results from piloting the 

equipment indicated that errors were not being introduced 

by inaccuracies in the measurement but rather when one 

beat was picked up twice by the peak detection algorithm. 

 
Fig. 3: Block diagram of PPG sensor 

 



This was easy to flag in the data set as the RR interval 

would be 10 to 20 times smaller than previous values and 

could easily be ‘trimmed’ by software processing. 

To address this potential issue, a feedback loop was 

created in which descriptive information about the history of 

HR data acquired during the session is used as an input to 

the peak detection routine – this allows the routine to 

anticipate the expected range of input readings, and reject 

any spurious readings which do not fall in this range. These 
‘HR Statistics’ were created by first averaging the last 10 

RR intervals, after trimming outliers that were over 50% 

higher or lower than the previous reading. This result was 

then used to calculate a heuristic upper and lower bound for 

‘realistic’ fluctuations in the input data set. Analysis of 

actual data sets from pilot testing indicated that beat to beat 

changes in RR interval were generally of small magnitude 

of only a few percent. Therefore the heuristic upper and 

lower bounds were set at 35% higher and lower than the 

average HR as recorded over 10 previous beats.  

As this cutoff value is several orders of magnitude 

greater than the range of normal HR variations, it does not 

pose the risk of excluding any real data; however it is still 

sensitive enough to pick up the errors. Implementation of 

this feedback loop into the peak detection routine enabled it 

to discard any values outside the expected range from the 

data set. To validate this further, detailed logs were kept by 
the software during its normal operation. These revealed 

that in most of the trials, the automatic trimming feedback 

loop was not triggered at all, indicating that the 

measurement technique was already quite sound. In the few 

cases where the trimming feedback loop was triggered, the 

errors did not make their way into the final data set. The 

resulting array of RR interval data is then streamed to a disk 

file for later re-use by routines to derive HRV or other 

statistical data. This processing may be carried out off-line 

or in real time depending on the configuration of the 

software. An overview of the functional software 

components is detailed in Fig. 4. 

d) Processing and Output 

Output data from the PPG (termed ‘Raw HR Log’, in 

Fig. 4) consists of a list of time values (in seconds) at which 

R peaks were detected. This data may be subjected to 

various types of manipulation to derive features of interest. 

The manipulation of the output data may be divided into 

time and frequency domain processing methods and these 
are discussed in the following sections. 

 

 
 

Simple time domain measures include the heart rate or 

the intervals between successive beats. This information can 

then be used to calculate other values of interest including 

the mean RR interval, mean HR and variance. Statistical 

measures can also be determined from this data. 

HR was calculated using a moving average technique, 

similar to many commercially available pulse oximeters. As 

the instantaneous heart rate calculated from a single beat 

(current RR interval / 60) proved to be erratic and subject to 

rapid fluctuations, the averaging technique results in a more 

robust measure. This is at the expense of some response 
time, as any sudden changes in HR will not be apparent 

until they have persisted for long enough (typically a few 

seconds) to influence the running average being displayed.  

Another basic measure of HRV is the standard deviation 

of the RR intervals, that is, the square root of variance. 

Since variance is mathematically equal to total power of 

spectral analysis, this measure reflects all the components 

responsible for variability in the period of recording [33].  

Akselrod, Gordon, Ubel and Shannon [34] introduced 

power spectral analysis of HRV to quantitatively examine 

various components contributing to cardiovascular control. 

PSD analysis gives information about how power (or 

variance) is distributed as a function of frequency. This 

makes it possible to observe how the variance is being 

exhibited in certain frequency bands making it possible to 

discriminate between variance from different causes, such 

as rate of breathing, or exertion, or mental effort  [33]. A 
block diagram of the steps involved in converting the Raw 

HR Log output from the sensor into a value for HRV is 

given in Fig. 5. 

 
Fig 4: PPG software functional components 

 

Fig. 6: Frequency domain processing of HRV 



 

The first step is to interpolate the data, to obtain a data 

set that is evenly spaced in the time domain.  The Raw HR 

Log contains an array of RR intervals, this is an unevenly 

sampled plot with samples occurring whenever a heartbeat 

event occurs, and is unsuitable for frequency domain 

analysis. To make frequency domain analysis possible, this 

data was transformed into an evenly sampled time series by 

resampling and interpolation using the cubic spline method. 

This yielded a continuous signal as a function of time which 

is suitable for mathematical analysis of frequency 

components such as the Fast Fourier Transform (FFT). The 

sampling frequency (of interpolation) is deliberately kept 
sufficiently high so that the Nyquist frequency of the 

spectrum is not within the frequency range of interest.  

The plot of RR intervals is sparse and consists of 

unevenly spaced data points that correspond to when heart 

beats occurred (i.e. at 0.6, 1.1, 1.7, 2.3 seconds into the 

recording). By resampling at evenly spaced points (e.g. 0.1, 

0.2, 0.3, 0.4 seconds) and using the spline method to 

interpolate between these values, the plot may be 

transformed into a smooth curve. Data in this form is then 

suitable for spectral analysis, including the FFT and PSD 

functions. 

The next step is to window this input data to obtain a 

subset of the recording that will be used for the subsequent 

analysis. As the total variance increases with the length of 

analyzed recording [35], this step is essential to ensure that 

the readings taken at different points are comparable. The 

window size (or sampling period) is adjustable in software, 

however a default setting of 100 seconds was used in this 
implementation. 

As the subset of data being extracted will later be used 

for spectral analysis via FFT and PSD calculations, it is 

essential that a suitable windowing technique is employed. 

The FFT transform assumes that the data set provided is 

periodic in nature, and the endpoints of the waveform may 

be interpreted as though they are connected together [36]. If 

the input waveform is truncated, then this discontinuity 

would cause spectral leakage whereby the edge effects of 

the truncated waveform would be evident in the power 

spectrum. This effect is minimized by the use of a 

windowing function. In this implementation, a Hanning 

window [37] was used. This makes the endpoints of the 

waveform meet and therefore results in a continuous 

waveform without sharp transitions. This waveform may 

then be passed directly to the PSD function with no further 

pre-processing. The output of the PSD function is 

commonly viewed in several specific frequency bands; these 

correspond to activity in various branches of the autonomic 

nervous system. A list of the frequency domain measures is 

detailed in Table 1.   
As can be seen in the table, the Low Frequency (LF) and 

High Frequency (HF) components may also be represented 

in normalized units; this minimizes the influence of changes 

in total variance on the values of LF and HF.  When spectral 

components are expressed in absolute units, the changes in 

total variance influence LF and HF in the same direction 

and obscure any changes in the fractional distribution. For 

example, the effect of certain drugs reduces both LF and HF 

components. Because of the reduction in total power, LF 

appears to be unchanged if considered in absolute units. 

However normalization makes this change more apparent 

[38]. Thus the provision was made in the software to 

produce normalized values wherever possible in addition to 

the other components.  

Frequency domain analysis has the advantage of 

observing activity in specific areas as opposed to viewing 

the total variance in the sample. Thus, it is also somewhat 

resistant against being influenced by errors outside the 
frequency band of interest. For example, initial tests 

demonstrated that the sampling artifacts introduced by noise 

or by false readings had a large impact on the Very Low 

Frequency (VLF) band of the spectral analysis (simply 

because the artifacts were uncommon but large in 

magnitude). However, the normalized low frequency score 

which was being observed proved to be quite robust against 

the potential errors as it was not affected by changes in the 

VLF component. 

V. CONCLUSION 

This paper has described the development and 

implementation of an open affective platform. This platform 

has the provisions for physiological data acquisition (from 

 
 

TABLE 1 Frequency domain analysis of HRV 

 

Variables Units Descriptions 

Very low 

frequency 

(VLF)   

ms
2
 Power from 0–0.04 Hz. 

Low frequency 

(LF)   

ms
2
 Power from 0.04–0.15 Hz. 

High frequency 

(HF) 

ms
2
 Power from 0.15–0.4 Hz. 

LF Norm n.u. LF power in normalized units: 

LF/(Total Power–VLF)*100. 

HF Norm n.u. HF power in normalized units: 

HF/(Total Power–VLF)*100. 

LF/HF Ratio   LF [ms
2
]/HF [ms

2
]. 

 

Fig 5: Frequency domain processing of HRV 



the user), processing and analysis and finally communication 

to make this information available to other applications. This 

approach has addressed the shortcomings identified with the 

use of commercially available platforms. In particular, this 

platform brings the flexibility to make dramatic changes and 

improvements in all aspects of the way in which 

physiological data is acquire, stored and transmitted. 

The experimenter is free to use any types of sensor 

hardware or physical interface to the user; internally the way 
in which the data is processed is also not constrained to a few 

pre-set routines, but completely customizable. For example, 

the feedback loop described in the HR processing section of 

this implementation is a refinement that would not have been 

possible had an open environment not been used. The 

solution is also not constrained to any specific data 

acquisition hardware and the solution may be modified to 

accommodate various platforms. Indeed, a separate and 

complementary area of research currently being undertaken 

aims to evaluate alternative data acquisition solutions with 

the objective of establishing the most low cost and widely 

available platform in the hope of encouraging growth and 

developments in this field. 
The affective platform described in this paper has been 

used successfully in over 80 data collection sessions. The 
flexibility of this implementation has made it possible to 
evaluate many aspects of data acquisition and processing and 
test many variables that would not have been possible 
without full control over the measuring environment. The 
ability to perform real-time analysis of certain frequency 
domain HRV measures as indicators of affective valence is a 
substantial step forward and improvement over currently 
available physiological data processing environments. This 
platform is one functional component of a complete affective 
application model. The proposed model aims to streamline 
and support the development of affective computing 
applications and make these more accessible to the wider 
community of developers. Future research will build upon 
the strengths of this platform and associated model and 
iteratively incorporate new capabilities. Of particular 
significance is the transference of these technologies into 
more widely accessible physical interfaces, such as portable 
or wearable devices. It is hoped that these developments will 
stimulate growth and development in the field of affective 
computing - an area that holds promise to play a pivotal role 
in the development and design of the next generation of 
computer interfaces. 
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