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Abstract. Current state-of-the-art Named Entity Recognition (NER)
typically involves fine-tuning transformer-based models like BERT or
RoBERTa with annotated datasets, posing challenges in annotation cost,
model robustness, and data privacy. An emerging approach uses pre-
trained Large Language Models (LLMs) such as ChatGPT to extract
entities directly with a few or zero examples, achieving performance com-
parable to fine-tuned models. However, reliance on the close-source com-
mercial LLMs raises cost and privacy concerns. In this work, we inves-
tigate open-source LLMs like Llama2 for NER on local consumer-grade
GPUs, aiming to significantly reduce costs compared to cloud solutions
while ensuring data security. Experimental results demonstrate compet-
itive NER performance, achieving F1 85.37% on the CoNLL03 dataset
and can also be generalised to specific domains, such as scientific texts.

Keywords: Natural language processing · Named entity recognition ·
Large language models · Open source software · Close source software ·
Evaluation

1 Introduction

Named Entity Recognition (NER) plays a pivotal role in Natural Language Pro-
cessing (NLP) by identifying and classifying entities such as names of persons,
organisations, locations, dates, and more within unstructured text [8]. Effective
NER is crucial for numerous applications in different domains. For example, over
30 million publications in PubMed [23] use NER to extract biomedical entities
such as genes, proteins, drugs, and diseases, facilitating downstream tasks.

State-of-the-art (SoTA) NER models [35, 9] are typically supervised fine-
tuning BERT-based models. However, fine-tuned NER model have a list of weak-
ness: 1) they always require human-labelled high-quality data with sufficient
samples; 2) the labelling process itself is very expensive and labour-intensive;
3) NER labelling is subjective and error-prone—different people may label the
same entity differently. For instance, given “Apple iPhone 12", one person may
classify the entire phrase as a Product, while another may label “Apple" as an
Organisation and “iPhone 12" as a product; 4) a fine-tuned NER model that
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performs well on one dataset may not perform as expected due to out-of-domain
or out-of-distribution issues; 5) adding a new NER type to an existing dataset
is challenging because the entire dataset needs review; 6) acquiring annotated
datasets for low-resource languages presents additional challenges [4].

Recently, the launch of Large Language Models (LLMs) marks a transforma-
tive era in NLP, demonstrating success in tasks from natural language under-
standing to question answering across multiple languages [3]. LLM-based NER
can effectively alleviate the issues discussed above by following instructions con-
structed from one or a few sample sentences (known as prompts). While LLMs
have been found very successful in many areas of NLP applications, experimental
results [10] demonstrated that the NER performance of LLMs such as ChatGPT
is still far behind the specifically fine-tuned small language model, with F1 score
of ChatGPT’s 30% vs 91% (SoTA) model [26, 16]. However, all existing works
only evaluate closed-source LLMs [10, 26, 37, 41]. To the best of our knowledge,
there is no literature evaluating open-source LLMs for their NER capabilities.
This inspires our research question: “Can open-source LLMs effectively perform
NER?"

Addressing this research question involves three primary concerns: cost, data
privacy and data annotation. Compared to commercial and closed-source LLMs
like OpenAI’s GPTx3 which require users to upload data via paid APIs, poten-
tially compromising sensitive information [40], open-source LLMs can be freely
downloaded and run locally. There are two popular ways to use LLMs: fine-
tuning and in-context learning. Fine-tuning also requires many annotated data;
however, in-context learning only needs a few examples, known as few-shot learn-
ing.

This work explores the ability of open-source LLMs on NER with one-shot
and few-shot learning. Specifically, we select three LLMs in our experiments with
the consideration of three factors: popularity, model size, and ranked position on
the Huggingface open-source leaderboard4. We consider LLMs that have more
than 7 billion parameters, and released after November of 2022, the release of
OpenAI’s ChatGPT. More details about model selection can be found in Section
4.1. Our code is available on GitHub5. Our contributions are:

– Existing works use close-source LLMs for NER which raise cost and data
privacy concerns in specific domains. To the best of our knowledge, our
research is the first in the literature to evaluate open-source LLMs for their
NER capabilities.

– We compare the performance of different LLMs from one-shot to four-shot
scenarios. This approach allows us to evaluate the adaptability and learning
efficiency of each LLM, providing insights into their strengths and limitations
in handling NER tasks with varying levels of data availability. It opens the
door for business domain users to conduct NER projects themselves, without
heavily depending on expensive NER experts.

3 https://platform.openai.com/docs/overview
4 https://huggingface.co/open-llm-leaderboard
5 https://github.com/Simon-ozgit/LLM-Eva
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– Our experimental datasets include both common domains and specific do-
main, ensuring that our results are more generalisable to a broader audience.

2 Related Works

2.1 From Fine-tuning to Few-shot/zero-shot Learning

Fine-tuning: Fine-tuning involves adding a layer for different NLP tasks and
then fine-tuning the parameters of a pre-trained model to minimise task-specific
parameters [28, 7]. One of the extreme approaches for different NLP tasks is to
re-fit a task-specific architecture like ELMo, as proposed by [24]. ELMo encodes
not only syntactic features from training data but also the semantics of the data
in a contextual manner, thereby enhancing overall NLP task performance. How-
ever, this approach introduces task-specific parameters and does not effectively
leverage pre-trained models. GPT [27] addresses this issue by converting all
structured input into token sequences to match its autoregressive decoder-only
architecture and then adding an output layer with softmax normalisation. GPT-
2 [28] utilises the same fine-tuning strategy, achieved SoTA performance for 7 out
of 8 test datasets. BERT [7] also utilises a pre-trained model to initialise each of
the downstream NLP task architectures, except for the output layer. It pre-trains
a model with unlabelled data for various pre-training tasks; during fine-tuning,
all parameters are fine-tuned with annotated data for different NLP tasks [7].
This ensures all NLP tasks share nearly identical architecture, and leverage the
weights of the pre-trained model. BERT push the overall GLUE [33] score up
absolute 7.7%. To obtain better performance, each task may require thousands
or tens of thousands labelled training instances, which is labour intensive and
expensive [3].

Few/zero-shot learning, LLM In-context learning, prompting: In-context
learning was introduced by OpenAI in 2020 when it released GPT-3, an LLM
with 175 billion parameters, trained with 300 billion tokens [3]. As the architec-
ture of LLMs becoming more complex and larger, and trained with more data,
fine-tuning such LLMs are becoming harder for both data size and computational
power. As estimated by Lambdalabs6, training GPT-3 may cost $4.6 million US
dollars and take 355 years to finish. Importantly, human beings can perform infer-
ence with just zero, or a few examples, without any further training/fine-tuning.
OpenAI defines the few-shot and zero-shot capabilities of LLMs like GPT-3 as
in-context learning, which means LLMs learn broad meta-knowledges and capa-
bilities during training, and automatically apply appropriately learned patterns
for different inference tasks, without any task-specific fine-tuning, just with a
few examples, or without any examples but simply an instruction (aka prompt).
GPT-3 reveals that as model size is increasing, in-context learning capabilities
are increasing as wells [3]. Since GPT-3, many LLMs with in-context learning

6 https://en.wikipedia.org/wiki/GPT-3
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capabilities have been developed and released, such as GPT-4 [21], PaLM2 [2],
Gemini [1]; and open source models such as Llama [31], Llama2 [32], FlanT5 [5],
and other. We omit multi-modal LLMs as they are out of scope of this research.

2.2 Large Language Models for NER

NER capabilities of ChatGPT have been studied via zero-shot settings [37, 41].
Xie et al [41] decomposes NER tasks for specific types with examples, adds syn-
tactic prompting (e.g., part-of-speech tags), employs tool augmentation (using
NLP tools or syntactic prompts to provide additional information), and combines
these strategies. The augmented prompts are then used to collect responses from
ChatGPT, with majority voting determining the final NER results. This method
significantly improves over the vanilla zero-shot approach. In the study, Llama-2
consistently performs worse compared to GPT-3.5 and even GPT-3.

GPT-NER [34] is another study aiming at using ChatGPT to extract named
entities. This study found that the performance gap between ChatGPT and fine-
tuned NER models is due to fine-tuning being a sequence labelling task, while
LLM-based NER is an auto-regressive generative model. GPT-NER aims to
bridge this gap by converting the sequence labelling task into an auto-regressive
task using special tokens to label named entities. GPT-NER also addresses the
hallucination [11] issues in LLMs by utilising a self-verification strategy, which
asks the LLM itself to verify the extracted entities.

Most research on Information Extraction with LLMs evaluates closed-source
models, primarily the ChatGPT series [10, 26, 17, 22, 39].

3 Research Gap

Based on the critical review of the related literature, we address the research gap
of NER capabilities of open-source LLMs with the following research questions:
– RQ1: How effective are open-source LLMs at extracting NERs using only

one-shot learning?
– RQ2: Do the open-source larger models outperform the smaller models for

NER?
– RQ3: How well do open-source LLMs generalise for NER in different do-

mains, such as NER in scientific texts?
– RQ4: How does the number of shots affect the LLMs’ NER performance?

This study aims to answer these questions by using popular open-source NER
datasets for ease of access and comparison. More details about datasets can
be found in Section 5.1. The answers to these questions could have significant
impacts on the field of NER for businesses, as the cost of NER could be dra-
matically reduced by using these one-shot prompts and open-source LLMs. This
approach not only eliminates the costly, human-labour-intensive task of training
data labelling but also avoids the need for domain-specific training data labelling
and fine-tuning, which are both financially costly and time-consuming. In addi-
tion, open-source LLMs provide an opportunity to process sensitive information
without relying on third-party services that might compromise data privacy.
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4 Methodology

We employ one-shot in-context demonstration strategy [3] to extract named
entities and evaluate the performance of this approach. Additionally, we extend
our prompts to include more examples (from two to four) to address error-
prone NER types in this research. For humans, only a brief instruction or a few
demonstrations are sufficient to competently perform a new task [3]. This few-
shot in-context learning capability of LLMs is desirable because, firstly, collecting
thousands or hundreds of thousands of labelled data examples to fine-tune an
LLM for every new NLP task is very expensive and limits the efficient usage
of LLMs. Secondly, LLMs are pre-trained for broader applications, but fine-
tuning tends to narrow down the LLMs’ capability and can cause issues such as
catastrophic forgetting [29, 15]. Therefore, understanding the one-shot/few-shot
NER capability of LLMs is pivotal for effective and efficient NLP applications
using LLMs. The instruction utilised in our experiments is, as shown in Figure 1:
“Help me extract named entities such as Person, Organisation, Location, and
Miscellaneous.".

Fig. 1: NER output of Llama-3 70B with one-shot learning.

4.1 LLM Model Selection

We follow considerations of cost, hardware limitations and carbon emissions sug-
gested by [20] to select LLMs for our experiments, constraining the size of the
LLMs to the range of approximately 7 billion to 34 billion parameters. Test-
ing models with over 70 billion parameters would require more computational
power, be more expensive, necessitate higher hardware configurations, and re-
sult in greater carbon emissions. Conversely, although smaller models with fewer
than 7 billion parameters have recently shown promising performance on some
tasks [18], due to the scaling law and emergent abilities of LLMs [38, 13], we
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leave the evaluation of smaller LLMs for future work. Table 1 shows the models
used in this paper.

Table 1: Selected Models for NER Experiments
Model # Parameters Released Year

Llama2-7B [32] 7 billion7 2023
Llama2-13B [32] 13 billion8 2023

Llama39 8 billion10 2024
Mistral [12] 7 billion11 2023
SOLAR [14] 10.7 billion12 2023

5 Experiments

5.1 Datasets

We focus on English text only. To facilitate comparisons with experimental re-
sults from other research, we used the following three dataset: CoNLL03 [30],
OntoNotes5 [25], and SciERC [19]. Details of the datasets are listed in Table 2.

Table 2: Datasets in Experiments
Name Size (Train/Dev/Test) NER Type # of NER Types

CoNLL03 14,041/3,250/3,453 LOC, ORG, PER, MIS 4

OntoNotes5 49,706/13,900/10,348

CARDINAL, DATE, EVENT,
FAC, LANGUAGE, LAW,
MONEY, PERSON, ORG, LOC,
GPE, NORP, ORDINAL,
PERCENT, PRODUCT,
QUANTITY, TIME,
WORK_OF_ART

18

SciERC 1,861/275/551 Task, Method, Evaluation,
Metric, Material, Scientific
Term, General, Other

8

As point out by [36], annotated datasets contain noise that negatively influ-
ences NER performance evaluations. A mis-annotation rate of 5.38% is a signifi-
cant concern when SoTA performance is as high as approximately 93% in terms
of F1 scores [36]. We therefore evaluated our NER performance based on the
corrected test dataset. We exclude the WNUT17 dataset [6] due to its lack of
capitalisation, more heterogeneous NER types, and the fact that its annotation
quality has not been thoroughly evaluated [42].

5.2 Metrics

Three metrics are used: precision, recall, and F1 as defined below. Since LLMs
might not predict the exact same entity as the answer, we adopt a soft match
criterion. For example, given the sentence “Apple iPhone 12 is a new product,"
the LLM might predict “Apple iPhone 12" as the entity, while the true label is
“iPhone 12." Although the prediction is not identical, it is still correct. The soft
match criterion accounts for such variations. We define:
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– TP: True Positive, the number of NERs correctly assigned to their types
– FP: False Positive, the number of NERs incorrectly assigned to other types
– FN: False Negative, the number of NERs incorrectly rejected by a NER type
– TN: True Negative, the number of NERs corrected rejected by a NER type

Precision(p) =
TP

TP + FP
if TP + FP > 0; otherwise undefined (1)

recall(r) =
TP

TP + FN
if TP + FN > 0; otherwise undefined (2)

F1 =
2pr

p+ r
(3)

5.3 1-shot Results on CoNLL03

Table 3: Performance of 1-shot on CoNLL03 test dataset. Abbreviations used:
7B (Llama2-7B), 13B (Llama2-13B), L3 (Llama3-8B).
NER Type Precision Recall F1

7B 13B L3 Mistral SOLAR 7B 13B L3 Mistral SOLAR 7B 13B L3 Mistral SOLAR
LOC 67.80 78.53 78.11 87.99 92.41 77.92 62.54 95.45 65.54 66.39 72.51 69.63 85.91 75.12 77.27
ORG 67.85 67.84 63.66 57.93 69.35 58.11 49.55 74.54 42.71 49.40 62.61 57.27 68.67 49.17 57.70
PER 96.44 95.24 98.54 98.49 98.56 86.51 63.94 97.49 85.75 81.69 91.20 76.51 98.01 91.68 89.34

Overall 78.17 80.83 80.94 84.17 88.32 74.96 59.04 90.31 66.39 66.75 76.53 68.24 85.37 74.23 76.03

We did not evaluate the performance of MISC due to the inherent differences
in how LLMs define MISC. When evaluating the breakdown by entity types
(LOC, ORG, PER), a similar trend emerges. For instance, SOLAR achieves the
highest precision for identifying all NER types, indicating its ability to minimise
false positives. However, Llama3 surpasses it in recall and F1 on all entity types,
suggesting a trade-off between precision and recall strategies. According to the
leaderboard13, the highest F1 of CoNLL03 dataset achieved 94.6%, while Llama3
scores 85.37%, indicating a gap of 9.23%. Despite this gap, LLMs demonstrate
competitive performance using only one-shot examples.

While analysing the results, we found this gap might also be due to the vary-
ing formats generated by LLMs. For example, Llama2-7B sometimes produces
predictions formatted as "Person: " and other times as "1. Person:...". Addi-
tionally, some predicted entities are on the same line, while others start on a
new line with a special symbol. This inconsistency makes it challenging to cre-
ate a universal regular expression rule that covers all cases, potentially causing
our rules to miss some correct answers. Even though we set the temperature
to 0.0001, inconsistent formats still occur. Furthermore, LLMs might predict
a more accurate NER type that is not among the expected NER types in the
dataset. For instance, given the text “CAN / U.S. DOLLAR EXCHANGE RATE
: 1.3570.", Llama-7B predicts “Currency: CAN, USD; Exchange Rate: 1.3570".
However, “currency" and “exchange rate" are not included in the NER types in
the dataset.
13 https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003
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Comparing larger models, such as Llama2-13B and SOLAR, with smaller
ones, such as Llama3-8B, underscores the impact of model size on NER perfor-
mance. Larger models do not consistently achieve higher metrics across all NER
types, despite benefiting from increased capacity and potentially richer training
data utilisation. In terms of recall and F1 score, Llama2-7B demonstrates better
performance (overall 76.53%) than both SOLAR (overall 76.03%) and Llama2-
13B (overall 68.24%). The failure of larger models to outperform smaller models
could have various factors. One possible explanation could be the quality and
quantity of the training data. While a larger model theoretically has the capacity
to learn more complex patterns, it also requires a vast amount of high-quality
training data to effectively leverage its increased capacity. If the training data
for Llama-13B is insufficient or less diverse compared to that of 7B models, it
may not be able to generalise as well to unseen data.

5.4 1-shot Results on OntoNotes5

Table 4: Performance of 1-shot on OntoNotes5 test dataset. Abbreviations used:
7B (Llama2-7B), 13B (Llama2-13B), L3 (Llama3).

NER Type Precision Recall F1
7B 13B L3 Mistral SOLAR 7B 13B L3 Mistral SOLAR 7B 13B L3 Mistral SOLAR

CARDINAL 2.25 40.92 37.35 19.57 8.68 2.11 21.85 7.70 28.33 10.82 2.18 28.49 12.77 23.15 9.63
DATE 74.72 56.35 50.15 54.35 65.30 61.32 29.78 11.37 62.84 62.79 67.36 38.97 18.54 58.29 64.02

EVENT 8.70 69.23 68.75 78.95 64.91 21.05 55.10 19.64 91.84 90.24 12.31 61.36 30.56 84.91 75.51
FAC 26.85 20.48 35.29 5.88 7.14 54.72 25.76 18.18 16.67 28.57 36.02 22.82 24.00 8.70 11.43
GPE 47.37 53.52 60.53 48.77 54.28 70.44 46.30 18.01 70.77 79.84 56.65 49.65 27.76 57.74 64.62

LANGUAGE 15.38 62.50 100.00 58.82 84.21 18.18 62.50 18.18 66.67 84.21 16.67 62.50 30.77 62.50 84.21
LAW 24.14 33.33 87.50 53.57 41.38 41.18 17.24 18.42 57.69 54.55 30.43 22.73 30.43 55.56 47.06
LOC 10.76 9.28 28.85 13.79 36.05 45.95 10.00 10.64 37.74 63.10 17.44 9.63 15.54 20.20 45.89

MONEY 9.50 40.99 94.12 78.45 94.16 18.58 30.28 10.29 93.57 92.57 12.57 34.83 18.55 85.35 93.36
NORP 4.49 7.71 23.88 14.31 7.77 7.84 7.84 7.24 32.49 17.04 5.71 7.77 11.11 19.87 10.67

ORDINAL 8.86 34.62 38.89 25.00 37.33 5.88 19.29 8.28 16.41 19.44 7.07 24.77 13.66 19.81 25.57
ORG 57.08 38.00 53.58 72.38 76.67 61.22 26.04 9.72 66.88 72.66 59.07 30.90 16.46 69.52 74.62

PERCENT 25.58 54.69 100.00 66.43 76.64 8.09 11.40 1.49 79.17 57.34 12.29 18.87 2.93 72.24 65.60
PERSON 81.17 73.36 92.87 79.82 95.25 77.56 42.84 23.68 77.73 83.01 79.32 54.09 37.73 78.76 88.71

PRODUCT 20.37 42.86 29.41 43.10 37.29 35.48 27.78 8.06 60.98 59.46 25.88 33.71 12.66 50.51 45.83
QUANTITY 65.22 68.97 23.81 51.76 79.63 34.09 21.05 13.89 69.84 46.24 44.78 32.26 17.54 59.46 58.50

TIME 33.85 35.65 80.00 37.06 63.64 35.48 30.15 11.76 44.17 46.39 34.65 32.67 20.51 40.30 53.66
WORK_OF_ART 28.57 17.46 46.67 22.92 57.03 47.37 9.65 4.43 60.00 65.77 35.64 12.43 8.09 33.17 61.09

Overall 50.43 48.00 58.70 54.18 62.37 55.35 31.89 13.79 65.50 67.52 52.78 38.32 22.34 59.30 64.84

Table 4 shows that each model exhibits strengths and weaknesses depending
on the NER type evaluated. For instance, Mistral has the best F1 score for
EVENT (84.91%), whereas SOLAR achieves the best F1 score for MONEY
(93.36%). Overall, SOLAR demonstrates the highest precision, recall, and F1
scores. In terms of precision, Llama3 achieves the highest precision for the most
NER types (8 out of 18), but its recall is relatively low. SOLAR and Mistral
achieves the highest recall across the most NER types (9 out of 18). For F1
scores, SOLAR leads with the highest F1 scores in 10 out of 18 NER types.

The performance on the OntoNotes5 dataset is significantly lower than on
the CoNLL03 dataset, likely due to the increased difficulty presented by the
greater number of NER types in OntoNotes5. According to the leaderboard14, the
14 https://paperswithcode.com/sota/named-entity-recognition-ner-on-ontonotes-v5
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highest F1 score on the OntoNotes5 dataset achieved without extra training data
is 91.9%, while SOLAR scores 64.84%, indicating a substantial gap of 27.06%.
This limitation might be due to a single example being insufficient to instruct
the model to distinguish complex NER types. To investigate this, we increase
the number of shots in Section 5.6. Again, larger models, such as Llama2-13B,
do not consistently outperform smaller models.

5.5 1-shot Results on SciERC

Table 5: Performance of 1-shot on sciERC test dataset. Abbreviations used: 7B
(Llama2-7B), 13B (Llama2-13B), L3 (Llama3).

NER Type Precision Recall F1
7B 13B L3 Mistral SOLAR 7B 13B L3 Mistral SOLAR 7B 13B L3 Mistral SOLAR

Method 76.52 70.29 66.56 83.65 63.80 27.98 52.34 68.15 78.24 61.17 40.97 60.00 67.34 80.85 62.46
Task 75.53 71.24 56.12 54.74 70.83 31.70 53.69 68.32 64.60 71.20 44.65 61.24 61.62 59.26 71.02

Other Scientific Term 4.00 4.74 39.27 34.88 24.35 1.06 5.19 54.09 43.30 31.38 1.68 4.96 45.50 38.63 27.42
Material 22.22 56.82 87.60 24.14 64.91 4.76 45.87 80.30 25.93 69.16 7.84 50.76 83.79 25.00 66.97
Generic 0.00 1.11 4.46 3.92 1.92 0.00 0.94 5.68 4.12 2.15 0.00 1.02 5.00 4.02 2.03
Metric 30.00 67.39 77.05 8.57 76.79 4.92 58.49 87.04 8.33 78.18 8.45 62.63 81.74 8.45 77.48
Overall 44.58 42.69 53.02 48.39 48.24 14.33 36.27 61.59 52.36 52.05 21.69 39.22 56.98 50.30 50.07

From Table 5, it is obvious that Llama3 consistently performs well in terms of
precision, recall, and F1 across most categories. SOLAR and Mistral also show
strong performance in specific categories, with SOLAR excelling in precision
and Mistral in certain F1 scores. According to the leaderboard15, the highest F1
score on the sciERC dataset is 72.4% . In comparison, Llama3 scores 56.98%,
indicating a substantial gap of 15.42%. While analysing the results, we also
found this gap might be due to the varying formats generated by LLMs, which
has been analysed in Section 5.3. This performance is achieved with only one-
shot examples, which demonstrates the effectiveness of LLMs in specific domains
with minimal examples.

5.6 Few-shot Results

In Section 5.4 and Section 5.5, we hypothesize that the gap between SoTA and
our results might be due to insufficient examples. To verify the hypothesis, we
add more examples to the prompt. All examples are randomly selected from the
training or dev datasets and contain as many NER types as possible.

The results for the CoNLL03 dataset (Figure 2a) reveal that the F1 of the
models show distinct trends. Except for the Llama-7B model, all models perform
better with four shots compared to one shot, though there is a slight drop at
two or three shots for some models. For example, Mistral’s performance increases
from one shot (76.53%) to four shots (77.11%), but its highest score is at three
shots. Similarly, Llama3 and SOLAR achieve their highest scores at four shots,
while Llama2-13B peaks at two shots. Interestingly, Llama-7B model performs
best at one shot but records its lowest score at four shots. This trend might
15 https://paperswithcode.com/sota/named-entity-recognition-ner-on-scierc
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Fig. 2: Overall F1 results across different datasets. The x-axis represents the
number of shots, ranging from 1 to 4, and the y-axis represents the F1 value.

be due to the varying complexity of the NER tasks, where additional examples
introduce variability that can momentarily hinder performance. This result is
also reflected in the OntoNotes5 dataset, a more complex dataset with more
NER types, where results with one shot outperform those with more shots.
SOLAR and Llama-7B have the lowest scores at four shots.

From Figure 2c, we can see that increasing from one shot to two shots slightly
improves performance on domain-specific datasets. Some models continue to
improve with three shots, but performance with four shots might even be lower
than with one shot.

In summary, for common NER types, increasing the number of shots might
enhance performance to some extent. However, if the NER types are complex
and not common, additional examples also introduce variability that can mo-
mentarily hinder performance.

6 Conclusion

This paper presents a comprehensive evaluation of the NER capabilities of open-
source LLMs, addressing a gap in the existing literature that has predominantly
focused on closed-source models. Our experiments reveal that open-source LLMs
perform competitively, particularly in extracting common entity types such as

Zhu, D., Li, S., Thompson, N., & Wong, K. (2024). Open-Source Large Language Models Excel in Named Entity Recognition. 
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Person, Organisation, and Location across general domains. Notably, larger mod-
els do not always guarantee superior performance, especially when dealing with
more complex or less frequent NER types. While an increase in training data
can slightly improve performance for common entities, inconsistencies in accu-
racy emerge when handling diverse and less frequent NERs. These findings sug-
gest that model performance is influenced by both entity complexity and data
availability.

In the future, addressing format inconsistencies in LLM-generated outputs
and experimenting with more diverse prompts will be critical for enhancing NER
performance across various domains. We will expand our work by exploring
more NLP tasks to assess the broader capabilities of open-source LLMs. This
study opens the door for future work focused on optimising LLMs in domain-
specific tasks and developing strategies to handle rare and complex entities more
effectively, thereby enhancing their utility across various applications.
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